Disjointness in Partially Ordered Vector Spaces

Disjointness in Partially Ordered Vector Spaces A notion of disjointness in arbitrary partially ordered vector spaces is introduced by calling two elements x and y disjoint if the set of all upper bounds of x + y and −x − y equals the set of all upper bounds of x − y and −x + y. Several elementary properties are easily observed. The question whether the disjoint complement of a subset is a linear subspace appears to be more difficult. It is shown that in directed Archimedean spaces disjoint complements are always subspaces. The proof relies on theory on order dense embedding in vector lattices. In a non-Archimedean directed space even the disjoint complement of a singleton may fail to be a subspace. According notions of disjointness preserving operator, band, and band preserving operator are defined and some of their basic properties are studied. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

Disjointness in Partially Ordered Vector Spaces

Loading next page...
Copyright © 2006 by Birkhäuser Verlag, Basel
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial