Disintegration in Compost Conditions and Water Uptake of Green Composites from Poly(Lactic Acid) and Hazelnut Shell Flour

Disintegration in Compost Conditions and Water Uptake of Green Composites from Poly(Lactic Acid)... Green composites of poly(lactic acid)-PLA and hazelnut shell flour (HSF) with and without epoxidized linseed oil (ELO) as plasticizer/compatibilizer were subjected to different aging conditions such as water uptake by immersion and disintegration in compost soil. The effect of the hydrolytic degradation was analyzed by measuring the weight gain as a function of the immersion time in water and calculating the corresponding diffusion coefficients. As expected, the water diffusion coefficient increases with HSF content while no remarkable change is obtained for plasticized compositions with ELO. Differential scanning calorimetry reveals a noticeable increase in crystallinity after the degradation process by water immersion. Degradation in controlled compost soil was followed thorough measurements of weight changes. In general, the weight change for a particular degradation time is lower as the HSF content increases. In addition, presence of ELO as plasticizer/compatibilizer delays the degradation process in compost soil. Scanning electron microscopy highlighted a noticeable deterioration of aged samples after 2 weeks with multiple crack formation and high surface abrasion due to microbial activity after 4 weeks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Polymers and the Environment Springer Journals

Disintegration in Compost Conditions and Water Uptake of Green Composites from Poly(Lactic Acid) and Hazelnut Shell Flour

Loading next page...
 
/lp/springer_journal/disintegration-in-compost-conditions-and-water-uptake-of-green-6l2tSynFU0
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Chemistry; Polymer Sciences; Environmental Chemistry; Materials Science, general; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering
ISSN
1566-2543
eISSN
1572-8900
D.O.I.
10.1007/s10924-017-0988-3
Publisher site
See Article on Publisher Site

Abstract

Green composites of poly(lactic acid)-PLA and hazelnut shell flour (HSF) with and without epoxidized linseed oil (ELO) as plasticizer/compatibilizer were subjected to different aging conditions such as water uptake by immersion and disintegration in compost soil. The effect of the hydrolytic degradation was analyzed by measuring the weight gain as a function of the immersion time in water and calculating the corresponding diffusion coefficients. As expected, the water diffusion coefficient increases with HSF content while no remarkable change is obtained for plasticized compositions with ELO. Differential scanning calorimetry reveals a noticeable increase in crystallinity after the degradation process by water immersion. Degradation in controlled compost soil was followed thorough measurements of weight changes. In general, the weight change for a particular degradation time is lower as the HSF content increases. In addition, presence of ELO as plasticizer/compatibilizer delays the degradation process in compost soil. Scanning electron microscopy highlighted a noticeable deterioration of aged samples after 2 weeks with multiple crack formation and high surface abrasion due to microbial activity after 4 weeks.

Journal

Journal of Polymers and the EnvironmentSpringer Journals

Published: Mar 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off