Disinfection of water containing Escherichia coli by use of a compound parabolic concentrator: effect of global solar radiation and reactor surface treatment

Disinfection of water containing Escherichia coli by use of a compound parabolic concentrator:... Effects of photocatalytic and solar disinfection on Escherichia coli K12 (TISTR 780) are examined. Experiments were conducted with titanium dioxide (TiO2) as catalyst, coated on plates by thermal spraying, with global solar illumination. Inactivation of E. coli as a function of time was conducted to find the rate of inactivation of the bacteria. The results revealed that the solar disinfection in the absence of the catalyst plates did not significantly affect the rate of inactivation of the bacteria when increasing the reactor surface area of solar illumination. Black reactor surfaces were slightly more affected when increasing the area of the reactor surface. However, the catalyst reactor surface had the greatest effect on inactivation of the bacteria when the reactor surface area was increased. Water temperature less than 45 °C did not affect the decrease in the rate of inactivation of the bacteria for either solar or photocatalytic disinfection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Disinfection of water containing Escherichia coli by use of a compound parabolic concentrator: effect of global solar radiation and reactor surface treatment

Loading next page...
 
/lp/springer_journal/disinfection-of-water-containing-escherichia-coli-by-use-of-a-compound-wd5cHemxsC
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1760-0
Publisher site
See Article on Publisher Site

Abstract

Effects of photocatalytic and solar disinfection on Escherichia coli K12 (TISTR 780) are examined. Experiments were conducted with titanium dioxide (TiO2) as catalyst, coated on plates by thermal spraying, with global solar illumination. Inactivation of E. coli as a function of time was conducted to find the rate of inactivation of the bacteria. The results revealed that the solar disinfection in the absence of the catalyst plates did not significantly affect the rate of inactivation of the bacteria when increasing the reactor surface area of solar illumination. Black reactor surfaces were slightly more affected when increasing the area of the reactor surface. However, the catalyst reactor surface had the greatest effect on inactivation of the bacteria when the reactor surface area was increased. Water temperature less than 45 °C did not affect the decrease in the rate of inactivation of the bacteria for either solar or photocatalytic disinfection.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jul 11, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off