Discretization of the vorticity field of a planar jet

Discretization of the vorticity field of a planar jet In data assimilation, information from sensors is used to correct the state variables of a numerical model. This has been used to great advantage by the weather prediction community in the context of direct numerical simulation (DNS) models, but has seen comparatively little use in point-vortex models. This is due in large part to data-processing issues. In order to keep up with the speeds necessary for effective data assimilation, one must extract and discretize the vortex structures from velocity field data in a computationally efficient fashion—i.e., using as few discrete vortices as possible to model the measured flow. This paper describes a new strategy for accomplishing this and evaluates the results using data from a laboratory-scale vortex-dominated planar jet. Large-scale vortex structures are found using a family of variants on traditional vortex extraction methods. By augmenting these methods with simple computational topology techniques, one obtains a new method that finds the boundaries of the coherent structures in a manner that naturally follows the geometry of the flow. This strategy was evaluated in the context of two standard vortex extraction methods, vorticity thresholding and Okubo–Weiss, and tested upon velocity field data from the experimental fluid flow. The large-scale structures found in this manner were then modeled with collections of discrete vortices, and the effects of the grain size of the discretization and the parameters of the discrete vortex model were studied. The results were evaluated by comparing the instantaneous velocity field induced by the discrete vortices to that measured in the jet. These comparisons showed that the two extraction techniques were comparable in terms of sensitivity and error, suggesting that the computationally simpler vorticity thresholding method is more appropriate for applications where speed is an issue, like data assimilation. Comparisons of different discretization strategies showed that modeling each large-scale vortex structure with a single discrete vortex provided the best compromise between mean-squared error and computational effort. These results are of potential interest in any situation where one must balance accuracy and expense while extracting vortices from a snapshot of a flow field; data assimilation is only one example. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Discretization of the vorticity field of a planar jet

Loading next page...
 
/lp/springer_journal/discretization-of-the-vorticity-field-of-a-planar-jet-7Crru0Uf7X
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0862-8
Publisher site
See Article on Publisher Site

Abstract

In data assimilation, information from sensors is used to correct the state variables of a numerical model. This has been used to great advantage by the weather prediction community in the context of direct numerical simulation (DNS) models, but has seen comparatively little use in point-vortex models. This is due in large part to data-processing issues. In order to keep up with the speeds necessary for effective data assimilation, one must extract and discretize the vortex structures from velocity field data in a computationally efficient fashion—i.e., using as few discrete vortices as possible to model the measured flow. This paper describes a new strategy for accomplishing this and evaluates the results using data from a laboratory-scale vortex-dominated planar jet. Large-scale vortex structures are found using a family of variants on traditional vortex extraction methods. By augmenting these methods with simple computational topology techniques, one obtains a new method that finds the boundaries of the coherent structures in a manner that naturally follows the geometry of the flow. This strategy was evaluated in the context of two standard vortex extraction methods, vorticity thresholding and Okubo–Weiss, and tested upon velocity field data from the experimental fluid flow. The large-scale structures found in this manner were then modeled with collections of discrete vortices, and the effects of the grain size of the discretization and the parameters of the discrete vortex model were studied. The results were evaluated by comparing the instantaneous velocity field induced by the discrete vortices to that measured in the jet. These comparisons showed that the two extraction techniques were comparable in terms of sensitivity and error, suggesting that the computationally simpler vorticity thresholding method is more appropriate for applications where speed is an issue, like data assimilation. Comparisons of different discretization strategies showed that modeling each large-scale vortex structure with a single discrete vortex provided the best compromise between mean-squared error and computational effort. These results are of potential interest in any situation where one must balance accuracy and expense while extracting vortices from a snapshot of a flow field; data assimilation is only one example.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off