Discretization of the vorticity field of a planar jet

Discretization of the vorticity field of a planar jet In data assimilation, information from sensors is used to correct the state variables of a numerical model. This has been used to great advantage by the weather prediction community in the context of direct numerical simulation (DNS) models, but has seen comparatively little use in point-vortex models. This is due in large part to data-processing issues. In order to keep up with the speeds necessary for effective data assimilation, one must extract and discretize the vortex structures from velocity field data in a computationally efficient fashion—i.e., using as few discrete vortices as possible to model the measured flow. This paper describes a new strategy for accomplishing this and evaluates the results using data from a laboratory-scale vortex-dominated planar jet. Large-scale vortex structures are found using a family of variants on traditional vortex extraction methods. By augmenting these methods with simple computational topology techniques, one obtains a new method that finds the boundaries of the coherent structures in a manner that naturally follows the geometry of the flow. This strategy was evaluated in the context of two standard vortex extraction methods, vorticity thresholding and Okubo–Weiss, and tested upon velocity field data from the experimental fluid flow. The large-scale structures found in this manner were then modeled with collections of discrete vortices, and the effects of the grain size of the discretization and the parameters of the discrete vortex model were studied. The results were evaluated by comparing the instantaneous velocity field induced by the discrete vortices to that measured in the jet. These comparisons showed that the two extraction techniques were comparable in terms of sensitivity and error, suggesting that the computationally simpler vorticity thresholding method is more appropriate for applications where speed is an issue, like data assimilation. Comparisons of different discretization strategies showed that modeling each large-scale vortex structure with a single discrete vortex provided the best compromise between mean-squared error and computational effort. These results are of potential interest in any situation where one must balance accuracy and expense while extracting vortices from a snapshot of a flow field; data assimilation is only one example. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Discretization of the vorticity field of a planar jet

Loading next page...
 
/lp/springer_journal/discretization-of-the-vorticity-field-of-a-planar-jet-7Crru0Uf7X
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0862-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial