# Discrete-Time Pricing and Optimal Exercise of American Perpetual Warrants in the Geometric Random Walk Model

Discrete-Time Pricing and Optimal Exercise of American Perpetual Warrants in the Geometric Random... An American option (or, warrant) is the right, but not the obligation, to purchase or sell an underlying equity at any time up to a predetermined expiration date for a predetermined amount. A perpetual American option differs from a plain American option in that it does not expire. In this study, we solve the optimal stopping problem of a perpetual American option (both call and put) in discrete time using linear programming duality. Under the assumption that the underlying stock price follows a discrete time and discrete state Markov process, namely a geometric random walk, we formulate the pricing problem as an infinite dimensional linear programming (LP) problem using the excessive-majorant property of the value function. This formulation allows us to solve complementary slackness conditions in closed-form, revealing an optimal stopping strategy which highlights the set of stock-prices where the option should be exercised. The analysis for the call option reveals that such a critical value exists only in some cases, depending on a combination of state-transition probabilities and the economic discount factor (i.e., the prevailing interest rate) whereas it ceases to be an issue for the put. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

# Discrete-Time Pricing and Optimal Exercise of American Perpetual Warrants in the Geometric Random Walk Model

, Volume 67 (1) – Feb 1, 2013
26 pages

/lp/springer_journal/discrete-time-pricing-and-optimal-exercise-of-american-perpetual-RU0B50myn2
Publisher
Springer-Verlag
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-012-9182-0
Publisher site
See Article on Publisher Site

### Abstract

An American option (or, warrant) is the right, but not the obligation, to purchase or sell an underlying equity at any time up to a predetermined expiration date for a predetermined amount. A perpetual American option differs from a plain American option in that it does not expire. In this study, we solve the optimal stopping problem of a perpetual American option (both call and put) in discrete time using linear programming duality. Under the assumption that the underlying stock price follows a discrete time and discrete state Markov process, namely a geometric random walk, we formulate the pricing problem as an infinite dimensional linear programming (LP) problem using the excessive-majorant property of the value function. This formulation allows us to solve complementary slackness conditions in closed-form, revealing an optimal stopping strategy which highlights the set of stock-prices where the option should be exercised. The analysis for the call option reveals that such a critical value exists only in some cases, depending on a combination of state-transition probabilities and the economic discount factor (i.e., the prevailing interest rate) whereas it ceases to be an issue for the put.

### Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Feb 1, 2013

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations