Discrete-time Kalman filter for Takagi–Sugeno fuzzy models

Discrete-time Kalman filter for Takagi–Sugeno fuzzy models In this work, the Kalman Filter (KF) and Takagi–Sugeno fuzzy modeling technique are combined to extend the classical Kalman linear state estimation to the nonlinear field. The framework for such extension is given, and in this sense the discrete-time fuzzy Kalman filter (DFKF) is obtained. It will be shown that the fuzzy version gives some advantages when is compared with the Extended Kalman Filter (EKF), which is the most typical extension of the KF to the nonlinear field. The proposed approach provides a significantly smaller processing time than the processing time of the EKF while the mean square error is also reduced. Finally, some examples, such as the Lorenz chaotic attractor and under actuated mechatronic system (pendubot), are used to compare the DFKF and EKF. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Evolving Systems Springer Journals

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Engineering; Complexity; Artificial Intelligence (incl. Robotics); Complex Systems
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial