Discrete element analysis of stone cantilever stairs

Discrete element analysis of stone cantilever stairs Stone cantilever staircases are present in case of both new constructions and reconstructions. The aim of the present paper is to understand the mechanical behaviour of these staircases with the help of discrete element simulations, and to compare the calculated behaviour to the estimations given by the existing manual calculation methods. First a literature review is presented on the statical calculation of cantilevered staircases: manual calculation methods suggested in the 1990s for straight and spiral staircases are introduced, focusing on Heyman’s theory and its improved counterparts. Then the discrete element method is used as a tool to perform virtual experiments, in order to evaluate the mechanical behaviour of the straight and spiral staircases for selfweight, live loads and support movement. The results obtained (internal forces, stresses, deflections) are then compared with the manual calculation results. The most important conclusions are: (1) the term “cantilever stair” is misleading: significant torsion moments occur in the treads, while the bending moments are much smaller than in a free cantilever; (2) the type of the connection between wall and treads (i.e. the end of the tread is simply supported by the wall against translation and torsion, or it is also partly clamped) has a fundamental influence on the internal forces and stress distributions; (3) for simply supported treads the existing manual methods are conservative for straight stairs, but for spiral stairs they dangerously underestimate the torsional moments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Meccanica Springer Journals

Discrete element analysis of stone cantilever stairs

Loading next page...
 
/lp/springer_journal/discrete-element-analysis-of-stone-cantilever-stairs-s3NtNXytP5
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Physics; Classical Mechanics; Civil Engineering; Automotive Engineering; Mechanical Engineering
ISSN
0025-6455
eISSN
1572-9648
D.O.I.
10.1007/s11012-017-0739-5
Publisher site
See Article on Publisher Site

Abstract

Stone cantilever staircases are present in case of both new constructions and reconstructions. The aim of the present paper is to understand the mechanical behaviour of these staircases with the help of discrete element simulations, and to compare the calculated behaviour to the estimations given by the existing manual calculation methods. First a literature review is presented on the statical calculation of cantilevered staircases: manual calculation methods suggested in the 1990s for straight and spiral staircases are introduced, focusing on Heyman’s theory and its improved counterparts. Then the discrete element method is used as a tool to perform virtual experiments, in order to evaluate the mechanical behaviour of the straight and spiral staircases for selfweight, live loads and support movement. The results obtained (internal forces, stresses, deflections) are then compared with the manual calculation results. The most important conclusions are: (1) the term “cantilever stair” is misleading: significant torsion moments occur in the treads, while the bending moments are much smaller than in a free cantilever; (2) the type of the connection between wall and treads (i.e. the end of the tread is simply supported by the wall against translation and torsion, or it is also partly clamped) has a fundamental influence on the internal forces and stress distributions; (3) for simply supported treads the existing manual methods are conservative for straight stairs, but for spiral stairs they dangerously underestimate the torsional moments.

Journal

MeccanicaSpringer Journals

Published: Aug 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial