Discovery, evaluation and distribution of haplotypes and new alleles of the Photoperiod-A1 gene in wheat

Discovery, evaluation and distribution of haplotypes and new alleles of the Photoperiod-A1 gene... Photoperiod response in wheat is determined to a large extent by the homoeologous series of Photoperiod 1 (Ppd1) genes. In this study, Ppd-A1 genomic sequences from the 5′ UTR and promoter region were analysed in 104 accessions of six tetraploid wheat species (Triticum dicoccoides, T. dicoccum, T. turgidum, T. polonicum, T. carthlicum, T. durum) and 102 accessions of six hexaploid wheat species (T. aestivum, T. compactum, T. sphaerococcum, T. spelta, T. macha, T. vavilovii). This data was supplemented with in silico analysis of publicly available sequences from 46 to 193 accessions of diploid and tetraploid wheat, respectively. Analysis of a region of the Ppd-A1 promoter identified thirteen haplotypes, which were divided in two haplogroups. Distribution of the Ppd-A1 haplogroups and haplotypes in wheat species, and their geographical distributions were analysed. Polymerase chain reaction combined with a heteroduplex mobility assay was subsequently used to efficiently discriminate between Ppd-A1 alleles, allowing identification of the Ppd-A1b haplotypes and haplogroups. The causes of anomalous migration of Ppd-A1 heteroduplexes in gels were found to be the localization of mismatches relative to the center of fragment, the cumulative effect of neighbouring polymorphic sites, and the location of mismatches within A/T-tracts. Analysis of the Ppd-A1 5′ UTR in hexaploid wheat revealed a novel mutation within the “photoperiod critical” region in a subset of T. compactum accessions. This putative photoperiod insensitive allele (designated Ppd-A1a.4) includes a 684 bp deletion which spans region in common with deletions previously identified in other photoperiod insensitive Ppd1 alleles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Discovery, evaluation and distribution of haplotypes and new alleles of the Photoperiod-A1 gene in wheat

Loading next page...
 
/lp/springer_journal/discovery-evaluation-and-distribution-of-haplotypes-and-new-alleles-of-oQTgJAkq06
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-015-0313-2
Publisher site
See Article on Publisher Site

Abstract

Photoperiod response in wheat is determined to a large extent by the homoeologous series of Photoperiod 1 (Ppd1) genes. In this study, Ppd-A1 genomic sequences from the 5′ UTR and promoter region were analysed in 104 accessions of six tetraploid wheat species (Triticum dicoccoides, T. dicoccum, T. turgidum, T. polonicum, T. carthlicum, T. durum) and 102 accessions of six hexaploid wheat species (T. aestivum, T. compactum, T. sphaerococcum, T. spelta, T. macha, T. vavilovii). This data was supplemented with in silico analysis of publicly available sequences from 46 to 193 accessions of diploid and tetraploid wheat, respectively. Analysis of a region of the Ppd-A1 promoter identified thirteen haplotypes, which were divided in two haplogroups. Distribution of the Ppd-A1 haplogroups and haplotypes in wheat species, and their geographical distributions were analysed. Polymerase chain reaction combined with a heteroduplex mobility assay was subsequently used to efficiently discriminate between Ppd-A1 alleles, allowing identification of the Ppd-A1b haplotypes and haplogroups. The causes of anomalous migration of Ppd-A1 heteroduplexes in gels were found to be the localization of mismatches relative to the center of fragment, the cumulative effect of neighbouring polymorphic sites, and the location of mismatches within A/T-tracts. Analysis of the Ppd-A1 5′ UTR in hexaploid wheat revealed a novel mutation within the “photoperiod critical” region in a subset of T. compactum accessions. This putative photoperiod insensitive allele (designated Ppd-A1a.4) includes a 684 bp deletion which spans region in common with deletions previously identified in other photoperiod insensitive Ppd1 alleles.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 8, 2015

References

  • A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.)
    Beales, J; Turner, A; Griffiths, S; Snape, JW; Laurie, DA
  • Frequency of photoperiod-insensitive Ppd-A1a alleles in tetraploid, hexaploid and synthetic hexaploid wheat germplasm
    Bentley, AR; Turner, AS; Gosman, N; Leigh, FJ; Maccaferri, M; Dreisigacker, S; Greenland, A; Laurie, DA

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off