Discord and entanglement of two-particle quantum walk on cycle graphs

Discord and entanglement of two-particle quantum walk on cycle graphs In this paper, we investigate the dynamics of quantum discord and entanglement between the coin states of two quantum walkers on cycle graphs of various size in discrete time. For a few special cycle sizes, we obtained analytical solutions showing the origin of perfect periodic recurrence of quantum discord and entanglement. We found that the time evolution of such quantum correlations becomes increasingly complex when we introduce local interactions between the two walkers by applying an additional phase to the coin operator when they are at the same node. The effects of the interaction strength on the dynamics of the quantum discord and entanglement are studied in detail. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Discord and entanglement of two-particle quantum walk on cycle graphs

Loading next page...
 
/lp/springer_journal/discord-and-entanglement-of-two-particle-quantum-walk-on-cycle-graphs-m7KTxwXenW
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-014-0859-y
Publisher site
See Article on Publisher Site

Abstract

In this paper, we investigate the dynamics of quantum discord and entanglement between the coin states of two quantum walkers on cycle graphs of various size in discrete time. For a few special cycle sizes, we obtained analytical solutions showing the origin of perfect periodic recurrence of quantum discord and entanglement. We found that the time evolution of such quantum correlations becomes increasingly complex when we introduce local interactions between the two walkers by applying an additional phase to the coin operator when they are at the same node. The effects of the interaction strength on the dynamics of the quantum discord and entanglement are studied in detail.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 23, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off