Directly Observed Membrane Fusion Between Oppositely Charged Phospholipid Bilayers

Directly Observed Membrane Fusion Between Oppositely Charged Phospholipid Bilayers A novel method was developed for the direct examination of pairwise encounters between positively and negatively charged phospholipid bilayer vesicles. Giant bilayer vesicles (unilamellar, 4–20 μm in diameter) prepared from 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine, a new cationic phospholipid derivative, were electrophoretically maneuvered into contact with individual anionic phospholipid vesicles. Fluorescence video microscopy revealed that such vesicles commonly underwent fusion within milliseconds (1 video field) after contact, without leakage. Fusion occurred at constant volume and, since flaccid vesicles were rare, the excess membrane was not available after fusion. Hemifusion (the outer monolayers of each vesicle fused while the inner monolayers remained intact) was inferred from membrane-bound dye transfer and a change in the contact area. Hemifusion was observed as a final stable state and as an intermediate to fusion of vesicles composed of charged phospholipids plus zwitterionic phospholipids. Hemifusion occurred in one of three ways following adhesion: either delayed with an abrupt increase in area of contact, immediately with a gradual increase in area of contact, or with retraction during which adherent vesicles dissociated from a flat contact to a point contact. Phosphatidylethanolamine strongly promoted immediate hemifusion; the resultant hemifused state was stable and seldom underwent complete fusion. Although sometimes single contacts between vesicles led to rupture of both, in other cases, a single vesicle underwent multiple fusion events. Direct observation has unequivocally demonstrated the fusion of two, isolated bilayer-bounded bodies to yield a stable, non-leaky product, as occurs in cells, in the absence of proteins. The Journal of Membrane Biology Springer Journals

Directly Observed Membrane Fusion Between Oppositely Charged Phospholipid Bilayers

Loading next page...
Copyright © Inc. by 1999 Springer-Verlag New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial