Directional PVO for reversible data hiding scheme with image interpolation

Directional PVO for reversible data hiding scheme with image interpolation Pixel Value Ordering (PVO) is an efficient data hiding scheme where pixels are ranked in ascending order within an image block and then modify minimum and maximum pixel value to embed secret data. The embedding capacity of existing PVO based data hiding schemes were limited to embed only two bits in a row of any block and unable to perform repeated embedding. To solve the existing problem, we have proposed a generalized directional PVO (DPVO) with varying block size. The original image is partitioned into blocks and then enlarged using image interpolation. A new parameter (α) is introduced and added with maximum pixel value and subtracted from minimum pixel value to maintain the order of the rank which is dependent on the size of the image block. To improve data hiding capacity, overlapped embedding has been considered in three different directions (1) Horizontal, (2) Vertical and (3) Diagonal of each block. Experiments show that the proposed scheme has a good margin of performance compared with the state-of-the-art methods. Several steganographic analysis deemed robust against several attacks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Directional PVO for reversible data hiding scheme with image interpolation

Loading next page...
 
/lp/springer_journal/directional-pvo-for-reversible-data-hiding-scheme-with-image-l8vpQ9R0eK
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-018-6203-2
Publisher site
See Article on Publisher Site

Abstract

Pixel Value Ordering (PVO) is an efficient data hiding scheme where pixels are ranked in ascending order within an image block and then modify minimum and maximum pixel value to embed secret data. The embedding capacity of existing PVO based data hiding schemes were limited to embed only two bits in a row of any block and unable to perform repeated embedding. To solve the existing problem, we have proposed a generalized directional PVO (DPVO) with varying block size. The original image is partitioned into blocks and then enlarged using image interpolation. A new parameter (α) is introduced and added with maximum pixel value and subtracted from minimum pixel value to maintain the order of the rank which is dependent on the size of the image block. To improve data hiding capacity, overlapped embedding has been considered in three different directions (1) Horizontal, (2) Vertical and (3) Diagonal of each block. Experiments show that the proposed scheme has a good margin of performance compared with the state-of-the-art methods. Several steganographic analysis deemed robust against several attacks.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off