Direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd-supported HNb3O8 metal oxide nanosheet catalyst

Direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd-supported HNb3O8 metal... A two-dimensional layered niobium oxide and its exfoliated nanosheet were examined as potential solid acid supports for direct synthesis of hydrogen peroxide from hydrogen and oxygen under intrinsically safe and noncorrosive reaction conditions. The catalytic performance strongly depended on the acid strength of the support material. The Pd-supported protonated niobium oxide nanosheet catalyst (Pd/HNb3O8-NS) with remarkably enhanced acidity was superior to layered Pd/KNb3O8 or Pd/HNb3O8 to promote the reaction. Hydrogen peroxide decomposition testing revealed that, although HNb3O8 was comparable to its exfoliated counterpart, HNb3O8-NS, in suppressing hydrogen peroxide decomposition without hydrogen, HNb3O8 was virtually ineffective in preventing hydrogen peroxide hydrogenation in the presence of hydrogen. However, compared with HNb3O8, HNb3O8-NS was found to be still effective at suppressing hydrogen peroxide hydrogenation. The different efficiency observed between HNb3O8 and HNb3O8-NS in the prevention of hydrogen peroxide hydrogenation implies that use of a highly acidic support is advantageous to effectively suppress faster and therefore more unfavorable hydrogen peroxide hydrogenation compared with decomposition. This result clearly demonstrates that the highly acidic HNb3O8 nanosheet can serve as an efficient solid acid support for direct synthesis of hydrogen peroxide from hydrogen and oxygen. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Direct synthesis of hydrogen peroxide from hydrogen and oxygen over Pd-supported HNb3O8 metal oxide nanosheet catalyst

Loading next page...
 
/lp/springer_journal/direct-synthesis-of-hydrogen-peroxide-from-hydrogen-and-oxygen-over-pd-YNlySoyQUc
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2311-z
Publisher site
See Article on Publisher Site

Abstract

A two-dimensional layered niobium oxide and its exfoliated nanosheet were examined as potential solid acid supports for direct synthesis of hydrogen peroxide from hydrogen and oxygen under intrinsically safe and noncorrosive reaction conditions. The catalytic performance strongly depended on the acid strength of the support material. The Pd-supported protonated niobium oxide nanosheet catalyst (Pd/HNb3O8-NS) with remarkably enhanced acidity was superior to layered Pd/KNb3O8 or Pd/HNb3O8 to promote the reaction. Hydrogen peroxide decomposition testing revealed that, although HNb3O8 was comparable to its exfoliated counterpart, HNb3O8-NS, in suppressing hydrogen peroxide decomposition without hydrogen, HNb3O8 was virtually ineffective in preventing hydrogen peroxide hydrogenation in the presence of hydrogen. However, compared with HNb3O8, HNb3O8-NS was found to be still effective at suppressing hydrogen peroxide hydrogenation. The different efficiency observed between HNb3O8 and HNb3O8-NS in the prevention of hydrogen peroxide hydrogenation implies that use of a highly acidic support is advantageous to effectively suppress faster and therefore more unfavorable hydrogen peroxide hydrogenation compared with decomposition. This result clearly demonstrates that the highly acidic HNb3O8 nanosheet can serve as an efficient solid acid support for direct synthesis of hydrogen peroxide from hydrogen and oxygen.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 16, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off