Direct or Indirect Regulation of Calcium-Activated Chloride Channel by Calcium

Direct or Indirect Regulation of Calcium-Activated Chloride Channel by Calcium Calcium-activated chloride channels (CaCCs) play fundamental roles in numerous physiological processes. Despite their physiological importance, the molecular identity of CaCCs has not been fully investigated until now. Recently, transmembrane 16A (TMEM16A) was demonstrated by three independent research groups to be a strong candidate for the CaCC molecular basis. To further investigate the electrophysiological characteristics, we constructed TMEM16A (abcd) stably transfected HEK293 cell lines and carried out whole-cell and excised inside–out patch-clamp experiments. The TMEM16A channel was Ca2+-dependent in both patch configurations. The TMEM16A current could be strongly inhibited by niflumic acid, and when Cl− was substituted by gluconate ions, the current was reduced considerably. In inside–out configuration, TMEM16A channel was time-independent but voltage-dependent, in which the half-maximum activating free Ca2+ concentration was 63 nM at 80 mV. While in whole-cell configuration, the current was both time- and voltage-dependent. About the rectification feature, the TMEM16A current also showed distinct characteristics in the two patch configurations. In whole cells, the TMEM16A channel expressed outward rectification at low Ca2+ concentration but when the Ca2+ concentration was high it became linear. On the contrary, in inside–out configuration, it always expressed outward rectification. Comparing the different characteristics in the two configurations, some underlying mechanisms remain to be identified, which is discussed with respect to direct or indirect activation. There was irreversible rundown in this channel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Direct or Indirect Regulation of Calcium-Activated Chloride Channel by Calcium

Loading next page...
 
/lp/springer_journal/direct-or-indirect-regulation-of-calcium-activated-chloride-channel-by-rzkW7aWz6f
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-011-9350-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial