Direct observation of a two-dimensional hole gas at oxide interfaces

Direct observation of a two-dimensional hole gas at oxide interfaces The discovery of a two-dimensional electron gas (2DEG) at the LaAlO3/SrTiO3 interface 1 has resulted in the observation of many properties 2–5 not present in conventional semiconductor heterostructures, and so become a focal point for device applications 6–8 . Its counterpart, the two-dimensional hole gas (2DHG), is expected to complement the 2DEG. However, although the 2DEG has been widely observed 9 , the 2DHG has proved elusive. Herein we demonstrate a highly mobile 2DHG in epitaxially grown SrTiO3/LaAlO3/SrTiO3 heterostructures. Using electrical transport measurements and in-line electron holography, we provide direct evidence of a 2DHG that coexists with a 2DEG at complementary heterointerfaces in the same structure. First-principles calculations, coherent Bragg rod analysis and depth-resolved cathodoluminescence spectroscopy consistently support our finding that to eliminate ionic point defects is key to realizing a 2DHG. The coexistence of a 2DEG and a 2DHG in a single oxide heterostructure provides a platform for the exciting physics of confined electron–hole systems and for developing applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Materials Springer Journals

Direct observation of a two-dimensional hole gas at oxide interfaces

Loading next page...
 
/lp/springer_journal/direct-observation-of-a-two-dimensional-hole-gas-at-oxide-interfaces-Ca4Z2HWGM5
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2018 by © The Author (s) 2017, under exclusive licence to Macmillan Publishers Limited, part of Springer Nature
Subject
Materials Science; Materials Science, general; Optical and Electronic Materials; Biomaterials; Nanotechnology; Condensed Matter Physics
ISSN
1476-1122
eISSN
1476-4660
D.O.I.
10.1038/s41563-017-0002-4
Publisher site
See Article on Publisher Site

Abstract

The discovery of a two-dimensional electron gas (2DEG) at the LaAlO3/SrTiO3 interface 1 has resulted in the observation of many properties 2–5 not present in conventional semiconductor heterostructures, and so become a focal point for device applications 6–8 . Its counterpart, the two-dimensional hole gas (2DHG), is expected to complement the 2DEG. However, although the 2DEG has been widely observed 9 , the 2DHG has proved elusive. Herein we demonstrate a highly mobile 2DHG in epitaxially grown SrTiO3/LaAlO3/SrTiO3 heterostructures. Using electrical transport measurements and in-line electron holography, we provide direct evidence of a 2DHG that coexists with a 2DEG at complementary heterointerfaces in the same structure. First-principles calculations, coherent Bragg rod analysis and depth-resolved cathodoluminescence spectroscopy consistently support our finding that to eliminate ionic point defects is key to realizing a 2DHG. The coexistence of a 2DEG and a 2DHG in a single oxide heterostructure provides a platform for the exciting physics of confined electron–hole systems and for developing applications.

Journal

Nature MaterialsSpringer Journals

Published: Feb 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off