Direct Discretization Method for the Cahn–Hilliard Equation on an Evolving Surface

Direct Discretization Method for the Cahn–Hilliard Equation on an Evolving Surface We propose a simple and efficient direct discretization scheme for solving the Cahn–Hilliard (CH) equation on an evolving surface. By using a conservation law and transport formulae, we derive the CH equation on evolving surfaces. An evolving surface is discretized using an unstructured triangular mesh. The discrete CH equation is defined on the surface mesh and its dual surface polygonal tessellation. The evolving triangular surfaces are then realized by moving the surface nodes according to a given velocity field. The proposed scheme is based on the Crank–Nicolson scheme and a linearly stabilized splitting scheme. The scheme is second-order accurate, with respect to both space and time. The resulting system of discrete equations is easy to implement, and is solved by using an efficient biconjugate gradient stabilized method. Several numerical experiments are presented to demonstrate the performance and effectiveness of the proposed numerical scheme. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Scientific Computing Springer Journals

Direct Discretization Method for the Cahn–Hilliard Equation on an Evolving Surface

Loading next page...
 
/lp/springer_journal/direct-discretization-method-for-the-cahn-hilliard-equation-on-an-Aky7ce6WvI
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Mathematics; Algorithms; Computational Mathematics and Numerical Analysis; Mathematical and Computational Engineering; Theoretical, Mathematical and Computational Physics
ISSN
0885-7474
eISSN
1573-7691
D.O.I.
10.1007/s10915-018-0742-6
Publisher site
See Article on Publisher Site

Abstract

We propose a simple and efficient direct discretization scheme for solving the Cahn–Hilliard (CH) equation on an evolving surface. By using a conservation law and transport formulae, we derive the CH equation on evolving surfaces. An evolving surface is discretized using an unstructured triangular mesh. The discrete CH equation is defined on the surface mesh and its dual surface polygonal tessellation. The evolving triangular surfaces are then realized by moving the surface nodes according to a given velocity field. The proposed scheme is based on the Crank–Nicolson scheme and a linearly stabilized splitting scheme. The scheme is second-order accurate, with respect to both space and time. The resulting system of discrete equations is easy to implement, and is solved by using an efficient biconjugate gradient stabilized method. Several numerical experiments are presented to demonstrate the performance and effectiveness of the proposed numerical scheme.

Journal

Journal of Scientific ComputingSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off