Dip time-dependent SILAR synthesis and electrochemical study of highly flexible PPy-Cu(OH)2 hybrid electrodes for supercapacitors

Dip time-dependent SILAR synthesis and electrochemical study of highly flexible PPy-Cu(OH)2... The effect of dip time variations on electrochemical performance of polypyrrole (PPy)-copper hydroxide hybrid thin-film electrodes was studied well in depth. Synthesis was carried out using a successive ionic layer adsorption and reaction (SILAR) method via an aqueous route, using 0.1 M pyrrole, 0.1 M Cu(NO3)2, and H2O2. The electrochemical analysis was made by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) analysis, and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) image of optimized electrode shows nanolamellae-like structures. The characteristic peak observed in Fourier transform infrared (FTIR) analysis at 1558 cm−1 validates the existence of PPy in hybrid electrode material, while the peaks observed at 21.5° and 44.5° in X-ray diffraction (XRD) patterns are evidence for triclinic Cu(OH)2. The observed maximum values of specific capacitance (SC), specific power (SP), specific energy (SE), and coulombic efficiency (η) of the optimized electrode are 56.05 F/g, 10.48 Wh/kg, 11.11 kW/kg, and 46.47%, respectively. For originality and value, the SILAR synthesis of PPy-Cu(OH)2 hybrid thin-film electrodes was carried out for the very first time. Synthesized electrodes showed improved surface structures and electrochemical stability than the pristine PPy electrodes which are necessary for the supercapacitive applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Solid State Electrochemistry Springer Journals

Dip time-dependent SILAR synthesis and electrochemical study of highly flexible PPy-Cu(OH)2 hybrid electrodes for supercapacitors

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Chemistry; Physical Chemistry; Electrochemistry; Energy Storage; Characterization and Evaluation of Materials; Analytical Chemistry; Condensed Matter Physics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial