Dinoflagellate Cysts Track Eutrophication in the Northern Gulf of Mexico

Dinoflagellate Cysts Track Eutrophication in the Northern Gulf of Mexico We examined organic-walled dinoflagellate cysts from one 210Pb-dated sediment core and 39 surface sediment samples from the northern Gulf of Mexico to determine the relationship between nutrient enrichment and cyst assemblages in this region characterized by oxygen deficiency. The core spans from 1962 to 1997 and its sampling location is directly influenced by the Mississippi River plume. Surface sediments were collected in 2006, 2007, 2008, and 2014 and represent approximately 1 to 4 years of accumulation. A total of 57 cyst taxa were recorded, and four heterotrophic taxa in particular were found to increase in the top section (1986–1997) of the core—Brigantedinium spp., cysts of Archaeperidinium minutum, cysts of Polykrikos kofoidii, and Quinquecuspis concreta. These taxa show a similar increasing trend with variations in US fertilizer consumption and Mississippi River nitrate concentrations, both of which increased substantially in the 1970s and 1980s. The same four heterotrophic taxa dominated dinoflagellate cyst assemblages collected near the Mississippi River Bird’s Foot Delta where nutrient concentrations were higher, especially in 2014. We propose that these cyst taxa can be used as indicators of eutrophication in the Gulf of Mexico. A canonical correspondence analysis (CCA) supports this proposition. The CCA identified sea-surface nutrient concentrations, sea-surface temperature, and sea-surface salinity as the most important factors influencing the cyst assemblages. In addition, cysts produced by the potentially toxic dinoflagellates Pyrodinium bahamense and Lingulodinium polyedrum were documented, but did not appear to have increased over the past 50 years. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Estuaries and Coasts Springer Journals

Dinoflagellate Cysts Track Eutrophication in the Northern Gulf of Mexico

Loading next page...
 
/lp/springer_journal/dinoflagellate-cysts-track-eutrophication-in-the-northern-gulf-of-610PGoqYJJ
Publisher
Springer Journals
Copyright
Copyright © 2017 by Coastal and Estuarine Research Federation
Subject
Environment; Environment, general; Ecology; Freshwater & Marine Ecology; Environmental Management; Coastal Sciences; Water and Health
ISSN
1559-2723
eISSN
1559-2731
D.O.I.
10.1007/s12237-017-0351-x
Publisher site
See Article on Publisher Site

Abstract

We examined organic-walled dinoflagellate cysts from one 210Pb-dated sediment core and 39 surface sediment samples from the northern Gulf of Mexico to determine the relationship between nutrient enrichment and cyst assemblages in this region characterized by oxygen deficiency. The core spans from 1962 to 1997 and its sampling location is directly influenced by the Mississippi River plume. Surface sediments were collected in 2006, 2007, 2008, and 2014 and represent approximately 1 to 4 years of accumulation. A total of 57 cyst taxa were recorded, and four heterotrophic taxa in particular were found to increase in the top section (1986–1997) of the core—Brigantedinium spp., cysts of Archaeperidinium minutum, cysts of Polykrikos kofoidii, and Quinquecuspis concreta. These taxa show a similar increasing trend with variations in US fertilizer consumption and Mississippi River nitrate concentrations, both of which increased substantially in the 1970s and 1980s. The same four heterotrophic taxa dominated dinoflagellate cyst assemblages collected near the Mississippi River Bird’s Foot Delta where nutrient concentrations were higher, especially in 2014. We propose that these cyst taxa can be used as indicators of eutrophication in the Gulf of Mexico. A canonical correspondence analysis (CCA) supports this proposition. The CCA identified sea-surface nutrient concentrations, sea-surface temperature, and sea-surface salinity as the most important factors influencing the cyst assemblages. In addition, cysts produced by the potentially toxic dinoflagellates Pyrodinium bahamense and Lingulodinium polyedrum were documented, but did not appear to have increased over the past 50 years.

Journal

Estuaries and CoastsSpringer Journals

Published: Dec 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off