Dimensional stability of multi-layered wood-based panels: a review

Dimensional stability of multi-layered wood-based panels: a review The deformation of wood due to swelling and shrinkage induced by water absorption and desorption of cell wall components is still challenging the engineering of dimensionally stable multi-layer wood-based panels. To overcome this problem and to accelerate the developing process of new wood-based panels, numerical methods developed to describe the deformation stability of man-made composites could possibly be applied to wood materials too. Relevant influencing factors on the hygro-thermal deformation behaviour of wood are needed as input parameters for a numerical description of the material behaviour. These factors are collected and described. Moreover, an overview of empirical and numerical approaches is given and the mathematical description of the deformation behaviour is discussed. Numerical models are based on micromechanical theories, which consider the hygro-thermal deformation of composite materials. Micromechanical methods from composite mechanics applied to wood at different scale levels are examined. Challenges that may be considered when using micromechanical approaches to calculate the hygroscopical deformation of multi-layered materials are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wood Science and Technology Springer Journals

Dimensional stability of multi-layered wood-based panels: a review

Loading next page...
 
/lp/springer_journal/dimensional-stability-of-multi-layered-wood-based-panels-a-review-fXtVchkaJd
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Wood Science & Technology; Ceramics, Glass, Composites, Natural Materials; Operating Procedures, Materials Treatment
ISSN
0043-7719
eISSN
1432-5225
D.O.I.
10.1007/s00226-017-0940-7
Publisher site
See Article on Publisher Site

Abstract

The deformation of wood due to swelling and shrinkage induced by water absorption and desorption of cell wall components is still challenging the engineering of dimensionally stable multi-layer wood-based panels. To overcome this problem and to accelerate the developing process of new wood-based panels, numerical methods developed to describe the deformation stability of man-made composites could possibly be applied to wood materials too. Relevant influencing factors on the hygro-thermal deformation behaviour of wood are needed as input parameters for a numerical description of the material behaviour. These factors are collected and described. Moreover, an overview of empirical and numerical approaches is given and the mathematical description of the deformation behaviour is discussed. Numerical models are based on micromechanical theories, which consider the hygro-thermal deformation of composite materials. Micromechanical methods from composite mechanics applied to wood at different scale levels are examined. Challenges that may be considered when using micromechanical approaches to calculate the hygroscopical deformation of multi-layered materials are discussed.

Journal

Wood Science and TechnologySpringer Journals

Published: Jul 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off