Digitally-intensive transceivers for future mobile communications—emerging trends and challenges

Digitally-intensive transceivers for future mobile communications—emerging trends and challenges This article presents an overview of the major trends and challenges involved with the design of multi-band, multi-standard digitally-intensive radio frequency transceivers for next generation mobile communications. In addition, we discuss in detail one aspect of the implementation challenges, namely the occurrence and cancellation of self-interference especially in carrier aggregation modes. For that, we present a novel digital cancellation technique to jointly compensate the self-interference caused by transmit (Tx) modulated spurs and Tx second order intermodulation distortion products (IMD2) in the receiver. This architecture exploits the underlying relation between both types of interference and offers a low-complexity solution to mitigate the Tx-IMD2 interference. Simulation results show, that the proposed technique significantly suppresses both types of interference and restores the signal-to-noise ratio of the wanted signal within 0.3 dB from its value in the absence of interference, thereby achieving 30 dB of cancellation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png e & i Elektrotechnik und Informationstechnik Springer Journals

Loading next page...
 
/lp/springer_journal/digitally-intensive-transceivers-for-future-mobile-communications-yP0ylJq7b8
Publisher
Springer Vienna
Copyright
Copyright © 2018 by The Author(s)
Subject
Engineering; Electrical Engineering; Computer Hardware; Software Engineering/Programming and Operating Systems
ISSN
0932-383X
eISSN
1613-7620
D.O.I.
10.1007/s00502-017-0576-1
Publisher site
See Article on Publisher Site

Abstract

This article presents an overview of the major trends and challenges involved with the design of multi-band, multi-standard digitally-intensive radio frequency transceivers for next generation mobile communications. In addition, we discuss in detail one aspect of the implementation challenges, namely the occurrence and cancellation of self-interference especially in carrier aggregation modes. For that, we present a novel digital cancellation technique to jointly compensate the self-interference caused by transmit (Tx) modulated spurs and Tx second order intermodulation distortion products (IMD2) in the receiver. This architecture exploits the underlying relation between both types of interference and offers a low-complexity solution to mitigate the Tx-IMD2 interference. Simulation results show, that the proposed technique significantly suppresses both types of interference and restores the signal-to-noise ratio of the wanted signal within 0.3 dB from its value in the absence of interference, thereby achieving 30 dB of cancellation.

Journal

e & i Elektrotechnik und InformationstechnikSpringer Journals

Published: Feb 6, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off