Digital Image Fusion Using HVS in Block Based Transforms

Digital Image Fusion Using HVS in Block Based Transforms The main aim of image fusion is to integrate the qualitative visual information from multiple images into a single image. Image fusion is implemented in spatial and transform domains. The implementation of algorithm in spatial domain is simple. But, the images are stored/transmitted using popular methods like JPEG and JPEG2000, which are implemented in the transform domain. Therefore fusion algorithms in spatial domain are not suitable for real time application. Image transforms are categorized as block-based and multi resolution-based transforms. In this study, block-based transforms such as Hadamard Transform (HT), Discrete Cosine Transform (DCT), Haar Transform (HrT), and Slant Transform (ST) are considered for image fusion. The DCT based approaches are suffering from undesirable side effects such as blurring and blocking artifacts that reduce the quality of the fused image. In this paper, the Human Visual System (HVS) model is considered to select the appropriate block from multiple images to obtain the fused image. The proposed approach is applied to all the block-based transforms to assess the performance. Methods such as Mutual Information (MI), Edge Strength and Orientation Preservation (ESOP), Feature Similarity Index (FSIM), Normalized Cross Correlation (NCC) and Score are used to assess the performance of the proposed algorithms. The experimental results indicate that the proposed method is better in terms of improved quality and reduced blocking artifacts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Signal Processing Systems Springer Journals

Digital Image Fusion Using HVS in Block Based Transforms

Loading next page...
 
/lp/springer_journal/digital-image-fusion-using-hvs-in-block-based-transforms-KmxGa02hC9
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Signal,Image and Speech Processing; Circuits and Systems; Electrical Engineering; Image Processing and Computer Vision; Pattern Recognition; Computer Imaging, Vision, Pattern Recognition and Graphics
ISSN
1939-8018
eISSN
1939-8115
D.O.I.
10.1007/s11265-017-1252-8
Publisher site
See Article on Publisher Site

Abstract

The main aim of image fusion is to integrate the qualitative visual information from multiple images into a single image. Image fusion is implemented in spatial and transform domains. The implementation of algorithm in spatial domain is simple. But, the images are stored/transmitted using popular methods like JPEG and JPEG2000, which are implemented in the transform domain. Therefore fusion algorithms in spatial domain are not suitable for real time application. Image transforms are categorized as block-based and multi resolution-based transforms. In this study, block-based transforms such as Hadamard Transform (HT), Discrete Cosine Transform (DCT), Haar Transform (HrT), and Slant Transform (ST) are considered for image fusion. The DCT based approaches are suffering from undesirable side effects such as blurring and blocking artifacts that reduce the quality of the fused image. In this paper, the Human Visual System (HVS) model is considered to select the appropriate block from multiple images to obtain the fused image. The proposed approach is applied to all the block-based transforms to assess the performance. Methods such as Mutual Information (MI), Edge Strength and Orientation Preservation (ESOP), Feature Similarity Index (FSIM), Normalized Cross Correlation (NCC) and Score are used to assess the performance of the proposed algorithms. The experimental results indicate that the proposed method is better in terms of improved quality and reduced blocking artifacts.

Journal

Journal of Signal Processing SystemsSpringer Journals

Published: Jul 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off