Digital holographic measurement of the Lagrangian evaporation rate of droplets dispersing in a homogeneous isotropic turbulence

Digital holographic measurement of the Lagrangian evaporation rate of droplets dispersing in a... The evaporation rate of diethyl ether droplets dispersing in a homogeneous, nearly isotropic turbulence is measured by following droplets along their trajectory. Measurements are performed at ambient temperature and pressure by using in-line digital holography. The holograms of droplets are recorded with a single high-speed camera (3 kHz), and droplets trajectories are reconstructed with an “inverse problem approach” (IPA) algorithm previously used in Chareyron et al. (New J Phys 14:043039, 2012) and Marié et al. (Exp Fluid 55(4):1708, 2014. doi: 10.1007/s00348-014-1708-6 ). The thermal/vapor concentration wakes developing around the droplets are visible behind each hologram. A standard reconstruction process is applied, showing that these wakes are aligned with the relative Lagrangian velocity seen by droplets at each instant. This relative velocity is that obtained from the dynamic equation of droplets motion and the positions and diameter of the droplets measured by holography and the IPA reconstruction. Sequences of time evolution of droplets 3D positions, diameter and 3D relative velocity are presented. In a number of cases, the evaporation rate of droplets changes along the trajectory and deviates from the value estimated with a standard film model of evaporation. This shows that turbulence may significantly influence the phase change process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Digital holographic measurement of the Lagrangian evaporation rate of droplets dispersing in a homogeneous isotropic turbulence

Loading next page...
 
/lp/springer_journal/digital-holographic-measurement-of-the-lagrangian-evaporation-rate-of-8YF76wbJ2Z
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2292-8
Publisher site
See Article on Publisher Site

Abstract

The evaporation rate of diethyl ether droplets dispersing in a homogeneous, nearly isotropic turbulence is measured by following droplets along their trajectory. Measurements are performed at ambient temperature and pressure by using in-line digital holography. The holograms of droplets are recorded with a single high-speed camera (3 kHz), and droplets trajectories are reconstructed with an “inverse problem approach” (IPA) algorithm previously used in Chareyron et al. (New J Phys 14:043039, 2012) and Marié et al. (Exp Fluid 55(4):1708, 2014. doi: 10.1007/s00348-014-1708-6 ). The thermal/vapor concentration wakes developing around the droplets are visible behind each hologram. A standard reconstruction process is applied, showing that these wakes are aligned with the relative Lagrangian velocity seen by droplets at each instant. This relative velocity is that obtained from the dynamic equation of droplets motion and the positions and diameter of the droplets measured by holography and the IPA reconstruction. Sequences of time evolution of droplets 3D positions, diameter and 3D relative velocity are presented. In a number of cases, the evaporation rate of droplets changes along the trajectory and deviates from the value estimated with a standard film model of evaporation. This shows that turbulence may significantly influence the phase change process.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off