Diffusion of Small Solutes in the Lateral Intercellular Spaces of MDCK Cell Epithelium Grown on Permeable Supports

Diffusion of Small Solutes in the Lateral Intercellular Spaces of MDCK Cell Epithelium Grown on... The diffusion coefficients of four solutes ranging in molecular weight from 238 to 10,000 in the lateral intercellular spaces (LIS) of cultured kidney cells (MDCK) grown on permeable supports were determined from the spread of fluorescence produced after the release of caged compounds by a pulse from a UV laser. Two types of experiments were performed: measurement of the rate of change of fluorescence after releasing a caged fluorophore, and measurement of the change in fluorescence of a relatively static fluorescent dye produced by the diffusion of an uncaged ligand for the dye. Fluorescence intensity was determined by photon-counting the outputs of a multichannel photomultiplier tube. Diffusion coefficients were determined in free solution as well as in the LIS of MDCK cells grown on permeable supports and the hindrance factor, θ, determined from the ratio of the free solution diffusivity to that in the LIS. The hindrance factors for 3000-MW dextran, 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS, MW 524) and N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES, MW 238) were not significantly different from 1. The diffusion of 10,000-MW dextran was substantially reduced in the LIS with a θ of 5.6 ± 0.3. Enzymatic digestion by neuraminidase of the sialic acid residues of the glycosylation groups in the LIS increased the diffusivity of the 10,000-MW dextran 1.8-fold indicating hindrance by the glycocalyx. We conclude that small solutes, such as Na+ and Cl−, would not be significantly restricted in their diffusion in the LIS and that solute concentration gradients could not develop along the LIS under physiologic conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Diffusion of Small Solutes in the Lateral Intercellular Spaces of MDCK Cell Epithelium Grown on Permeable Supports

Loading next page...
Copyright © Inc. by 2000 Springer-Verlag New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial