Diffusion of Alkyltriphenylphosphonium Bromides in Aqueous Micellar Solutions

Diffusion of Alkyltriphenylphosphonium Bromides in Aqueous Micellar Solutions Dynamic light scattering, conductometry, and capillary viscometry have been used to study aqueous micellar solutions of dodecyl-, tetradecyl-, and hexadecyltriphenylphosphonium bromides in a wide range of concentrations covering the first and second critical micelle concentrations (CMC1 and CMC2). It has been shown that the concentration curves for the diffusion coefficients of the ionic surfactants increase above CMC1 and, then, pass through a maximum. As the alkyl chain length increases, the slopes of the concentration curves within the range of the linear growth in the diffusion coefficient rise, the height of the maximum increases, and its position shifts toward lower concentrations. The obtained results have been explained in terms of a theory previously developed for ideal micellar systems. It has been shown that the mobility factor plays the predominant role in the range of the linear increase in the diffusion coefficient and the effect of the viscosity of a micellar surfactant solution is enhanced with a rise in its concentration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Colloid Journal Springer Journals

Diffusion of Alkyltriphenylphosphonium Bromides in Aqueous Micellar Solutions

Loading next page...
 
/lp/springer_journal/diffusion-of-alkyltriphenylphosphonium-bromides-in-aqueous-micellar-Ax5FjfGW0z
Publisher
Springer Journals
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Chemistry; Polymer Sciences; Surfaces and Interfaces, Thin Films
ISSN
1061-933X
eISSN
1608-3067
D.O.I.
10.1134/S1061933X18030109
Publisher site
See Article on Publisher Site

Abstract

Dynamic light scattering, conductometry, and capillary viscometry have been used to study aqueous micellar solutions of dodecyl-, tetradecyl-, and hexadecyltriphenylphosphonium bromides in a wide range of concentrations covering the first and second critical micelle concentrations (CMC1 and CMC2). It has been shown that the concentration curves for the diffusion coefficients of the ionic surfactants increase above CMC1 and, then, pass through a maximum. As the alkyl chain length increases, the slopes of the concentration curves within the range of the linear growth in the diffusion coefficient rise, the height of the maximum increases, and its position shifts toward lower concentrations. The obtained results have been explained in terms of a theory previously developed for ideal micellar systems. It has been shown that the mobility factor plays the predominant role in the range of the linear increase in the diffusion coefficient and the effect of the viscosity of a micellar surfactant solution is enhanced with a rise in its concentration.

Journal

Colloid JournalSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off