Differentially private histogram publication

Differentially private histogram publication Differential privacy (DP) is a promising scheme for releasing the results of statistical queries on sensitive data, with strong privacy guarantees against adversaries with arbitrary background knowledge. Existing studies on differential privacy mostly focus on simple aggregations such as counts. This paper investigates the publication of DP-compliant histograms, which is an important analytical tool for showing the distribution of a random variable, e.g., hospital bill size for certain patients. Compared to simple aggregations whose results are purely numerical, a histogram query is inherently more complex, since it must also determine its structure , i.e., the ranges of the bins. As we demonstrate in the paper, a DP-compliant histogram with finer bins may actually lead to significantly lower accuracy than a coarser one, since the former requires stronger perturbations in order to satisfy DP. Moreover, the histogram structure itself may reveal sensitive information, which further complicates the problem. Motivated by this, we propose two novel mechanisms, namely NoiseFirst and StructureFirst , for computing DP-compliant histograms. Their main difference lies in the relative order of the noise injection and the histogram structure computation steps. NoiseFirst has the additional benefit that it can improve the accuracy of an already published DP-compliant histogram computed using a naive method. For each of proposed mechanisms, we design algorithms for computing the optimal histogram structure with two different objectives: minimizing the mean square error and the mean absolute error, respectively. Going one step further, we extend both mechanisms to answer arbitrary range queries. Extensive experiments, using several real datasets, confirm that our two proposals output highly accurate query answers and consistently outperform existing competitors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Differentially private histogram publication

Loading next page...
 
/lp/springer_journal/differentially-private-histogram-publication-lvPhvoX64P
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-013-0309-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial