Differential response of two almond rootstocks to chloride salt mixtures in the growing medium

Differential response of two almond rootstocks to chloride salt mixtures in the growing medium It was examined how essential cations, Ca2+ and K+, can mitigate the toxic effects of NaCl on two different almond species (Prunus amygdalus Batsch) rootstocks, Garnem (GN15) and Bitter Almond. The tree growth parameters (water potential (Ψw), gas exchange, nutrient uptake) and leaf chlorophyll (Chl) content were measured in control and NaCl-treated plants with or without KCl or CaCl2 supplements. The addition of CaCl2 and KCl to Bitter Almond trees reduced their dry weight, shoot growth and leaf number although net photosynthetic assimilation rate (A) was not affected. These results indicated that changing of photo-assimilates flux to proline and/or soluble sugars synthesis may help to increase leaf Ψw. The Garnem trees also did not respond to the CaCl2 and KCl addition indicating that the plants are already getting enough of these two cations (Ca2+ and K+). In both rootstocks, NaCl in the medium reduced growth attributes, Ψw, A, stomatal conductance (g s), and leaf Chl content. When CaCl2 and KCl fertilizers were added together with NaCl to Bitter Almond trees, leaf K+ and Ca2+ contents increased while Na+ and Cl– decreased leading to higher Ca/Na and K/Na ratios, but shoot growth was not improved and even declined compared to NaCl-treated trees. It appears that the addition of salts further aggravated osmotic stress as indicated by the accumulation of proline and soluble sugars in leaf tissues. The addition of KCl or CaCl2 to NaCl-treated GN15 trees did not increase A, leaf Ψw, and shoot growth but improved ionic balances as indicated by higher Ca/Na and K/Na ratios. The reduction in A was mainly due to non-stomatal limitations in GN15, possibly due to the degradation of Chl a, unlike Bitter Almond, for which the reduction of A was due to stomata closure. The improvement in ionic balances and water status of Bitter Almond trees in response to addition of KCl or CaCl2 was apparently offset by a high sensitivity to Cl–; therefore, no-chloride salts should be the preferred forms of fertilizers for this rootstock. Both rootstocks were sensitive to soil salinity and cation supplements were of limited value in mitigating the effect of excessive salt concentrations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Differential response of two almond rootstocks to chloride salt mixtures in the growing medium

Loading next page...
 
/lp/springer_journal/differential-response-of-two-almond-rootstocks-to-chloride-salt-nYE706r0Xc
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716010192
Publisher site
See Article on Publisher Site

Abstract

It was examined how essential cations, Ca2+ and K+, can mitigate the toxic effects of NaCl on two different almond species (Prunus amygdalus Batsch) rootstocks, Garnem (GN15) and Bitter Almond. The tree growth parameters (water potential (Ψw), gas exchange, nutrient uptake) and leaf chlorophyll (Chl) content were measured in control and NaCl-treated plants with or without KCl or CaCl2 supplements. The addition of CaCl2 and KCl to Bitter Almond trees reduced their dry weight, shoot growth and leaf number although net photosynthetic assimilation rate (A) was not affected. These results indicated that changing of photo-assimilates flux to proline and/or soluble sugars synthesis may help to increase leaf Ψw. The Garnem trees also did not respond to the CaCl2 and KCl addition indicating that the plants are already getting enough of these two cations (Ca2+ and K+). In both rootstocks, NaCl in the medium reduced growth attributes, Ψw, A, stomatal conductance (g s), and leaf Chl content. When CaCl2 and KCl fertilizers were added together with NaCl to Bitter Almond trees, leaf K+ and Ca2+ contents increased while Na+ and Cl– decreased leading to higher Ca/Na and K/Na ratios, but shoot growth was not improved and even declined compared to NaCl-treated trees. It appears that the addition of salts further aggravated osmotic stress as indicated by the accumulation of proline and soluble sugars in leaf tissues. The addition of KCl or CaCl2 to NaCl-treated GN15 trees did not increase A, leaf Ψw, and shoot growth but improved ionic balances as indicated by higher Ca/Na and K/Na ratios. The reduction in A was mainly due to non-stomatal limitations in GN15, possibly due to the degradation of Chl a, unlike Bitter Almond, for which the reduction of A was due to stomata closure. The improvement in ionic balances and water status of Bitter Almond trees in response to addition of KCl or CaCl2 was apparently offset by a high sensitivity to Cl–; therefore, no-chloride salts should be the preferred forms of fertilizers for this rootstock. Both rootstocks were sensitive to soil salinity and cation supplements were of limited value in mitigating the effect of excessive salt concentrations.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Feb 16, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off