Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Differential regulation of genes encoding 1-aminocyclopropane- 1-carboxylate (ACC) synthase in etiolated pea seedlings: effects of indole-3-acetic acid, wounding, and ethylene

Differential regulation of genes encoding 1-aminocyclopropane- 1-carboxylate (ACC) synthase in... Treatment of 5- to 6-day-old etiolated pea (Pisum sativum L.) seedlings with indole-3-acetic acid (IAA) induced within 15 min an increase in the transcript levels of two genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase, Ps-ACS1 and Ps-ACS2. Simultaneous treatment with ethylene inhibited this increase and also caused a decrease in ACC synthase enzyme activity as compared to that of seedlings treated with IAA alone. These results indicate that ethylene inhibits its own biosynthesis by decreasing ACC synthase transcript levels via a negative feedback loop. Wounding of pea stems had no effect on the expression of Ps-ACS1, but led within 10 min to an increase in the mRNA levels of Ps-ACS2. This increase was also inhibited by ethylene. The wound signal was transmitted over a distance of at least 4 cm through the stem with no delay in induction or response intensity. The rapid transmission of the wound response is consistent with the possibility that a hydraulic or electric signal is responsible for the spread of the wound response. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Differential regulation of genes encoding 1-aminocyclopropane- 1-carboxylate (ACC) synthase in etiolated pea seedlings: effects of indole-3-acetic acid, wounding, and ethylene

Plant Molecular Biology , Volume 38 (6) – Oct 6, 2004

Loading next page...
1
 
/lp/springer_journal/differential-regulation-of-genes-encoding-1-aminocyclopropane-1-9KsUulxJI8

References (26)

Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1023/A:1006033030081
Publisher site
See Article on Publisher Site

Abstract

Treatment of 5- to 6-day-old etiolated pea (Pisum sativum L.) seedlings with indole-3-acetic acid (IAA) induced within 15 min an increase in the transcript levels of two genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase, Ps-ACS1 and Ps-ACS2. Simultaneous treatment with ethylene inhibited this increase and also caused a decrease in ACC synthase enzyme activity as compared to that of seedlings treated with IAA alone. These results indicate that ethylene inhibits its own biosynthesis by decreasing ACC synthase transcript levels via a negative feedback loop. Wounding of pea stems had no effect on the expression of Ps-ACS1, but led within 10 min to an increase in the mRNA levels of Ps-ACS2. This increase was also inhibited by ethylene. The wound signal was transmitted over a distance of at least 4 cm through the stem with no delay in induction or response intensity. The rapid transmission of the wound response is consistent with the possibility that a hydraulic or electric signal is responsible for the spread of the wound response.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

There are no references for this article.