Differential regulation of chloroplast gene expression in Chlamydomonas reinhardtii during photoacclimation: light stress transiently suppresses synthesis of the Rubisco LSU protein while enhancing synthesis of the PS II D1 protein

Differential regulation of chloroplast gene expression in Chlamydomonas reinhardtii during... Transfer of Chlamydomonas reinhardtii cells grown photoautotrophically in low light to higher light intensities has a dramatic transient effect on the differential expression of the two major chloroplast encoded photosynthetic proteins. Synthesis of the D1 protein of Photosystem II increases more than 10-fold during the first six hours in high light (HL), whereas synthesis of the large subunit (LSU) of Rubisco drops dramatically within 15 min and only gradually resumes at about 6 h. Synthesis of the chloroplast-encoded ATP synthaseβ subunit, the nuclear-encoded Rubisco small subunit and the nuclear-encoded β-tubulin is not noticeably affected. Up regulation of psbA mRNA translation accounts for a substantial fraction of the increased D1 synthesis, since accumulation of psbA mRNA increases 4.2- and 6.3-fold less than D1 synthesis at 6 and 18 h in HL. Down-regulation of LSU synthesis is not correlated with a reduction in the steady-state level of the rbcL transcript. Primer extension mapping of the 5' ends of the rbcL mRNAs reveals transcripts with start points located at -93 and -186 relative to the first translated ATG. Transfer of low light (LL)-grown cells to HL temporarily decreases the ratio of the -93 to -186 transcripts, but this ratio normalizes after 6 h in HL, coincident with the recovery in the synthesis of LSU. These several distinct effects of temporary light stress were correlated with a rapid, sustained increase in the reduction state of QA, a transient decline in photosynthetic efficiency, a less rapid drop in total chlorophyll content and a delay in cell division. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Differential regulation of chloroplast gene expression in Chlamydomonas reinhardtii during photoacclimation: light stress transiently suppresses synthesis of the Rubisco LSU protein while enhancing synthesis of the PS II D1 protein

Loading next page...
 
/lp/springer_journal/differential-regulation-of-chloroplast-gene-expression-in-yAbLudHr7j
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005814800641
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial