Differential expression of two tomato lactate dehydrogenase genes in response to oxygen deficit

Differential expression of two tomato lactate dehydrogenase genes in response to oxygen deficit Two different cDNAs encoding lactate dehydrogenase (LDH) were isolated from a library of hypoxically treated tomato roots and sequenced. The use of gene-specific probes on northern blots showed that Ldh2 mRNA was predominant in well-oxygenated roots and levels remained stable upon oxygen deficit; in contrast, Ldh1 mRNA accumulated to high levels within 2 h of hypoxia or anoxia. Immunoblot analyses of native gels using a polyclonal antiserum raised against an LDH1 fusion protein indicated that LDH2 homotetramer was the major isoform present in aerobic roots. Levels of both LDH1 and LDH2 subunits increased during an 18 h hypoxic treatment, together with a 5-fold rise in activity. These results suggest that the regulation of ldh1 expression is primarily at the transcriptional level while that of ldh2 is post-transcriptional. Increases in Ldh1 mRNA and LDH activity were not correlated with lactic acid production, which was maximal at the onset of anoxia in unacclimated roots and then declined. Taken together, our results indicate that LDH2 present in aerobic roots is principally responsible for lactic acid production occurring transiently upon imposition of anoxia. Possible physiological roles for LDH1 are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Differential expression of two tomato lactate dehydrogenase genes in response to oxygen deficit

Loading next page...
 
/lp/springer_journal/differential-expression-of-two-tomato-lactate-dehydrogenase-genes-in-h9tnCA0WQE
Publisher
Springer Journals
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005854002969
Publisher site
See Article on Publisher Site

Abstract

Two different cDNAs encoding lactate dehydrogenase (LDH) were isolated from a library of hypoxically treated tomato roots and sequenced. The use of gene-specific probes on northern blots showed that Ldh2 mRNA was predominant in well-oxygenated roots and levels remained stable upon oxygen deficit; in contrast, Ldh1 mRNA accumulated to high levels within 2 h of hypoxia or anoxia. Immunoblot analyses of native gels using a polyclonal antiserum raised against an LDH1 fusion protein indicated that LDH2 homotetramer was the major isoform present in aerobic roots. Levels of both LDH1 and LDH2 subunits increased during an 18 h hypoxic treatment, together with a 5-fold rise in activity. These results suggest that the regulation of ldh1 expression is primarily at the transcriptional level while that of ldh2 is post-transcriptional. Increases in Ldh1 mRNA and LDH activity were not correlated with lactic acid production, which was maximal at the onset of anoxia in unacclimated roots and then declined. Taken together, our results indicate that LDH2 present in aerobic roots is principally responsible for lactic acid production occurring transiently upon imposition of anoxia. Possible physiological roles for LDH1 are discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off