Differential expression of two cinnamate 4-hydroxylase genes in `Valencia' orange (Citrus sinensis Osbeck)

Differential expression of two cinnamate 4-hydroxylase genes in `Valencia' orange (Citrus... Two different full-length cDNAs for cinnamate 4-hydroxylase (C4H1 and C4H2) were isolated from Citrus sinensis Osbeck cv. Valencia libraries. C4H1 (1708 bp) and C4H2 (1871 bp) share only 65% identity on nucleotide and 66% identity on the amino acid level, respectively. C4H1 is most homologous to a cinnamate 4-hydroxylase sequence from French bean (Phaseolus vulgaris), but codes for a unique N-terminus. C4H2 shows highest similarity to a poplar (Populus kitakamiensis) sequence, but also shows a unique N-terminus. The two genes are expressed differentially in orange flavedo, C4H2 is constitutive, C4H1 is wound-induced. In competitive RT-PCR, the mRNA for both genes in wounded and untreated tissue was quantified. C4H1 is strongly wound-inducible from `not detectable' to about 35 fg mRNA per 50 ng total RNA 8 h after wounding. The first detectable C4H1 mRNA was found 4 h after wounding. After reaching peak levels 4 h later the levels slightly declined, but stayed elevated until the end of the experiment (48 h). C4H2 is expressed 3–10 times higher than wound-induced C4H1 even in the control sample; wounding transiently increases the level of expression another 2–3 times. The existence of different N-termini and their effects on the possible role of both genes in phenylpropanoid pathways is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Differential expression of two cinnamate 4-hydroxylase genes in `Valencia' orange (Citrus sinensis Osbeck)

Loading next page...
 
/lp/springer_journal/differential-expression-of-two-cinnamate-4-hydroxylase-genes-in-uZhXYTJwcm
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1011625619713
Publisher site
See Article on Publisher Site

Abstract

Two different full-length cDNAs for cinnamate 4-hydroxylase (C4H1 and C4H2) were isolated from Citrus sinensis Osbeck cv. Valencia libraries. C4H1 (1708 bp) and C4H2 (1871 bp) share only 65% identity on nucleotide and 66% identity on the amino acid level, respectively. C4H1 is most homologous to a cinnamate 4-hydroxylase sequence from French bean (Phaseolus vulgaris), but codes for a unique N-terminus. C4H2 shows highest similarity to a poplar (Populus kitakamiensis) sequence, but also shows a unique N-terminus. The two genes are expressed differentially in orange flavedo, C4H2 is constitutive, C4H1 is wound-induced. In competitive RT-PCR, the mRNA for both genes in wounded and untreated tissue was quantified. C4H1 is strongly wound-inducible from `not detectable' to about 35 fg mRNA per 50 ng total RNA 8 h after wounding. The first detectable C4H1 mRNA was found 4 h after wounding. After reaching peak levels 4 h later the levels slightly declined, but stayed elevated until the end of the experiment (48 h). C4H2 is expressed 3–10 times higher than wound-induced C4H1 even in the control sample; wounding transiently increases the level of expression another 2–3 times. The existence of different N-termini and their effects on the possible role of both genes in phenylpropanoid pathways is discussed.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off