Differential expression of putative cell death regulator genes in near-isogenic, resistant and susceptible barley lines during interaction with the powdery mildew fungus

Differential expression of putative cell death regulator genes in near-isogenic, resistant and... We analysed pathogenesis-related expression of genes, that are assumed to be involved in ubiquitous plant defence mechanisms like the oxidative burst, the hypersensitive cell death reaction (HR) and formation of localized cell wall appositions (papillae). We carried out comparative northern blot and RT-PCR studies with near-isogenic barley (Hordeum vulgareL. cv. Pallas) lines (NILs) resistant or susceptible to the powdery mildew fungus race A6 (Blumeria graminis f.sp. hordei, BghA6). The NILs carrying one of the R-genes Mla12, Mlg or the mlo mutant allele mlo5 arrest fungal development by cell wall appositions (mlo5) or a HR (Mla12) or both (Mlg). Expression of an aspartate protease gene, an ascorbate peroxidase gene and a newly identified cysteine protease gene was up-regulated after inoculation with BghA6, whereas the constitutive expression-level of a BAS gene, that encodes an alkyl hydroperoxide reductase, was reduced. Expression of a newly identified barley homologue of a mammalian cell death regulator, Bax inhibitor 1, was enhanced after powdery mildew inoculation. An oxalate oxidase-like protein was stronger expressed in NILS expressing penetration resistance. A so far unknown gene that putatively encodes the large subunit of a superoxide generating NADPH oxidases was constitutively expressed in barley leaves and its expression pattern did not change after inoculation. A newly identified barley Rac1 homologue was expressed constitutively, such as the functionally linked NADPH oxidase gene. Gene expression patterns are discussed with regard to defence mechanisms and signal transduction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Differential expression of putative cell death regulator genes in near-isogenic, resistant and susceptible barley lines during interaction with the powdery mildew fungus

Loading next page...
 
/lp/springer_journal/differential-expression-of-putative-cell-death-regulator-genes-in-near-iPc0G90alW
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1013635427949
Publisher site
See Article on Publisher Site

Abstract

We analysed pathogenesis-related expression of genes, that are assumed to be involved in ubiquitous plant defence mechanisms like the oxidative burst, the hypersensitive cell death reaction (HR) and formation of localized cell wall appositions (papillae). We carried out comparative northern blot and RT-PCR studies with near-isogenic barley (Hordeum vulgareL. cv. Pallas) lines (NILs) resistant or susceptible to the powdery mildew fungus race A6 (Blumeria graminis f.sp. hordei, BghA6). The NILs carrying one of the R-genes Mla12, Mlg or the mlo mutant allele mlo5 arrest fungal development by cell wall appositions (mlo5) or a HR (Mla12) or both (Mlg). Expression of an aspartate protease gene, an ascorbate peroxidase gene and a newly identified cysteine protease gene was up-regulated after inoculation with BghA6, whereas the constitutive expression-level of a BAS gene, that encodes an alkyl hydroperoxide reductase, was reduced. Expression of a newly identified barley homologue of a mammalian cell death regulator, Bax inhibitor 1, was enhanced after powdery mildew inoculation. An oxalate oxidase-like protein was stronger expressed in NILS expressing penetration resistance. A so far unknown gene that putatively encodes the large subunit of a superoxide generating NADPH oxidases was constitutively expressed in barley leaves and its expression pattern did not change after inoculation. A newly identified barley Rac1 homologue was expressed constitutively, such as the functionally linked NADPH oxidase gene. Gene expression patterns are discussed with regard to defence mechanisms and signal transduction.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off