Differential expression of genes encoding the light-dependent and light-independent enzymes for protochlorophyllide reduction during development in loblolly pine

Differential expression of genes encoding the light-dependent and light-independent enzymes for... The expression patterns of the two distinct subfamilies of genes (designated porA and porB) encoding the light- dependent NADPH:protochlorophyllide oxidoreductases (PORs) in loblolly pine (Pinus taeda L.) were examined. Transcripts arising from both gene subfamilies were shown to be present at high levels in the cotyledons of dark-grown pine seedlings and to a lesser extent in their stems. Exposure of dark-grown seedlings to light resulted in increased levels of both porA and porB transcripts, as well as increased levels of mRNAs encoding other photosynthesis-related gene products, suggesting that they are under a common mode of regulation. Relative levels of the porA and porB transcripts were similar in seedling cotyledons and primary needles of two-month-old pine trees, whereas only porB transcripts were present at a significant level in mature secondary needles of two-year-old trees. Immunoblot analysis showed that the 37 kDa PORA protein was most abundant in dark- grown tissues, decreased dramatically upon exposure to light, but could still be detected at low levels in light-grown seedlings. In comparison, levels of the 38 kDa PORB protein were not significantly changed upon transfer of dark-grown tissues to light. While both PORA and PORB were detected in cotyledons and primary needles, only PORB could be detected in mature needles. Transcripts derived from the three plastid genes, chlL, chlN, and chlB, encoding subunits of the light-independent protochlorophyllide reductase were detected in the cotyledons and stems of dark-grown seedlings, and in mature needles. The highest levels of chlL, chlN, and chlB transcripts were detected within the top one-third of the stem and decreased gradually towards the stem/root transition zone. Correspondingly, the highest levels of light-independent chlorophyll formation took place near the top of the hypocotyl. A similar pattern of expression was observed for other photosynthesis-related gene products, including porA and porB. Our results suggest that many aspects of the light-dependent, tissue-specific and developmental regulation of POR expression first described in angiosperms were already established in the less evolutionarily advanced gymnosperms. However, unlike angiosperms, light is not the dominant regulatory factor controlling porA expression in these species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Differential expression of genes encoding the light-dependent and light-independent enzymes for protochlorophyllide reduction during development in loblolly pine

Loading next page...
 
/lp/springer_journal/differential-expression-of-genes-encoding-the-light-dependent-and-bmCqWzwIuV
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006144630071
Publisher site
See Article on Publisher Site

Abstract

The expression patterns of the two distinct subfamilies of genes (designated porA and porB) encoding the light- dependent NADPH:protochlorophyllide oxidoreductases (PORs) in loblolly pine (Pinus taeda L.) were examined. Transcripts arising from both gene subfamilies were shown to be present at high levels in the cotyledons of dark-grown pine seedlings and to a lesser extent in their stems. Exposure of dark-grown seedlings to light resulted in increased levels of both porA and porB transcripts, as well as increased levels of mRNAs encoding other photosynthesis-related gene products, suggesting that they are under a common mode of regulation. Relative levels of the porA and porB transcripts were similar in seedling cotyledons and primary needles of two-month-old pine trees, whereas only porB transcripts were present at a significant level in mature secondary needles of two-year-old trees. Immunoblot analysis showed that the 37 kDa PORA protein was most abundant in dark- grown tissues, decreased dramatically upon exposure to light, but could still be detected at low levels in light-grown seedlings. In comparison, levels of the 38 kDa PORB protein were not significantly changed upon transfer of dark-grown tissues to light. While both PORA and PORB were detected in cotyledons and primary needles, only PORB could be detected in mature needles. Transcripts derived from the three plastid genes, chlL, chlN, and chlB, encoding subunits of the light-independent protochlorophyllide reductase were detected in the cotyledons and stems of dark-grown seedlings, and in mature needles. The highest levels of chlL, chlN, and chlB transcripts were detected within the top one-third of the stem and decreased gradually towards the stem/root transition zone. Correspondingly, the highest levels of light-independent chlorophyll formation took place near the top of the hypocotyl. A similar pattern of expression was observed for other photosynthesis-related gene products, including porA and porB. Our results suggest that many aspects of the light-dependent, tissue-specific and developmental regulation of POR expression first described in angiosperms were already established in the less evolutionarily advanced gymnosperms. However, unlike angiosperms, light is not the dominant regulatory factor controlling porA expression in these species.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off