Differential expression of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell system

Differential expression of cell-wall-related genes during the formation of tracheary elements in... Plants, animals and some fungi undergo processes of cell specialization such that specific groups of cells are adapted to carry out particular functions. One of the more remarkable examples of cellular development in higher plants is the formation of water-conducting cells that are capable of supporting a column of water from the roots to tens of metres in the air for some trees. The Zinnia mesophyll cell system is a remarkable tool with which to study this entire developmental pathway in vitro. We have recently applied an RNA fingerprinting technology, to allow the detection of DNA fragments derived from RNA using cDNA synthesis and subsequent PCR-amplified fragment length polymorphisms (cDNA-AFLP), to systematically characterize hundreds of the genes involved in the process of tracheary element formation. Building hoops of secondary wall material is the key structural event in forming functional tracheary elements and we have identified over 50 partial sequences related to cell walls out of 600 differentially expressed cDNA fragments. The Zinnia system is an engine of gene discovery which is allowing us to identify and characterize candidate genes involved in cell wall biosynthesis and assembly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Differential expression of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell system

Loading next page...
 
/lp/springer_journal/differential-expression-of-cell-wall-related-genes-during-the-9v7z4zG44e
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1010647902487
Publisher site
See Article on Publisher Site

Abstract

Plants, animals and some fungi undergo processes of cell specialization such that specific groups of cells are adapted to carry out particular functions. One of the more remarkable examples of cellular development in higher plants is the formation of water-conducting cells that are capable of supporting a column of water from the roots to tens of metres in the air for some trees. The Zinnia mesophyll cell system is a remarkable tool with which to study this entire developmental pathway in vitro. We have recently applied an RNA fingerprinting technology, to allow the detection of DNA fragments derived from RNA using cDNA synthesis and subsequent PCR-amplified fragment length polymorphisms (cDNA-AFLP), to systematically characterize hundreds of the genes involved in the process of tracheary element formation. Building hoops of secondary wall material is the key structural event in forming functional tracheary elements and we have identified over 50 partial sequences related to cell walls out of 600 differentially expressed cDNA fragments. The Zinnia system is an engine of gene discovery which is allowing us to identify and characterize candidate genes involved in cell wall biosynthesis and assembly.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off