Differential evolution optimization applied to the routing and spectrum allocation problem in flexgrid optical networks

Differential evolution optimization applied to the routing and spectrum allocation problem in... Flexible optical network (FON) architectures are considered a very promising solution where spectrum resources are allocated within flexible frequency grids. Routing and spectrum allocation (RSA) in FON is an NP-complete problem. So far, this problem has been optimally solved for small instances with integer linear programming and has been suboptimally solved for more realistic instances by heuristic strategies. In this paper, we introduce the application of differential evolution (DE) to the off-line RSA problem in flexible optical networks. To the best of our knowledge, our work is the first application of a DE algorithm to the RSA problem. We develop two DE permutation-based algorithms named DE general approach (DE-GC) and DE relative position index (DE-RPI). Comparative studies show that in many cases, DE outperforms many other well-known evolutionary computational approaches. Furthermore, the method typically requires few control parameters. An illustrative example of the application of the DE-based algorithms is presented, and then, different heuristics are compared against the DE-RSA algorithms. Algorithms are evaluated in different test bench optical networks, such as the NSFnet and the European optical network, and for networks up to 40 nodes, such as the USA and Japan networks. Moreover, the DE-based algorithms save up to 37 % of spectrum utilization for the NSFnet and 13 and 15 % for the USA and Japan networks, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Differential evolution optimization applied to the routing and spectrum allocation problem in flexgrid optical networks

Loading next page...
 
/lp/springer_journal/differential-evolution-optimization-applied-to-the-routing-and-wTutUyx75x
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-015-0558-3
Publisher site
See Article on Publisher Site

Abstract

Flexible optical network (FON) architectures are considered a very promising solution where spectrum resources are allocated within flexible frequency grids. Routing and spectrum allocation (RSA) in FON is an NP-complete problem. So far, this problem has been optimally solved for small instances with integer linear programming and has been suboptimally solved for more realistic instances by heuristic strategies. In this paper, we introduce the application of differential evolution (DE) to the off-line RSA problem in flexible optical networks. To the best of our knowledge, our work is the first application of a DE algorithm to the RSA problem. We develop two DE permutation-based algorithms named DE general approach (DE-GC) and DE relative position index (DE-RPI). Comparative studies show that in many cases, DE outperforms many other well-known evolutionary computational approaches. Furthermore, the method typically requires few control parameters. An illustrative example of the application of the DE-based algorithms is presented, and then, different heuristics are compared against the DE-RSA algorithms. Algorithms are evaluated in different test bench optical networks, such as the NSFnet and the European optical network, and for networks up to 40 nodes, such as the USA and Japan networks. Moreover, the DE-based algorithms save up to 37 % of spectrum utilization for the NSFnet and 13 and 15 % for the USA and Japan networks, respectively.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Sep 11, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off