Differential Drug Responses on Native GABAA Receptors Revealing Heterogeneity in Extrasynaptic Populations in Cultured Hippocampal Neurons

Differential Drug Responses on Native GABAA Receptors Revealing Heterogeneity in Extrasynaptic... Hippocampal pyramidal neurons potentially express multiple subtypes of GABAA receptors at extrasynaptic locations that could therefore respond to different drugs. We activated extrasynaptic GABAA receptors in cultured rat hippocampal pyramidal neurons and measured single-channel currents in order to compare the actions of two drugs that potentially target different GABAA receptor subtypes. Despite the possible difference in receptor targets of etomidate and diazepam, the two drugs were similar in their actions on native extrasynaptic GABAA receptors. Each drug produced three distinct responses that differed significantly in current magnitude, implying heterogeneous GABAA receptor populations. In the majority of patches, drug application increased both the single-channel conductance (>40 pS) and the open probability of the channels. By contrast, in the minority of patches, drug application caused an increase in open probability only. In the third group high-conductance channels were observed upon GABA activation and drug application increased their open probability only. The currents potentiated by etomidate or diazepam were substantially larger in patches displaying high-conductance GABA channels compared to those displaying only low-conductance channels. Factors contributing to the large magnitude of these currents were the long mean open time of high-conductance channels and the presence of multiple channels in these patches. In conclusion, we suggest that the local density of extrasynaptic GABAA receptors may influence their single-channel properties and may be an additional regulating factor for tonic inhibition and, importantly, differential drug modulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Differential Drug Responses on Native GABAA Receptors Revealing Heterogeneity in Extrasynaptic Populations in Cultured Hippocampal Neurons

Loading next page...
 
/lp/springer_journal/differential-drug-responses-on-native-gabaa-receptors-revealing-P5Bg73lRn1
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-008-9150-4
Publisher site
See Article on Publisher Site

Abstract

Hippocampal pyramidal neurons potentially express multiple subtypes of GABAA receptors at extrasynaptic locations that could therefore respond to different drugs. We activated extrasynaptic GABAA receptors in cultured rat hippocampal pyramidal neurons and measured single-channel currents in order to compare the actions of two drugs that potentially target different GABAA receptor subtypes. Despite the possible difference in receptor targets of etomidate and diazepam, the two drugs were similar in their actions on native extrasynaptic GABAA receptors. Each drug produced three distinct responses that differed significantly in current magnitude, implying heterogeneous GABAA receptor populations. In the majority of patches, drug application increased both the single-channel conductance (>40 pS) and the open probability of the channels. By contrast, in the minority of patches, drug application caused an increase in open probability only. In the third group high-conductance channels were observed upon GABA activation and drug application increased their open probability only. The currents potentiated by etomidate or diazepam were substantially larger in patches displaying high-conductance GABA channels compared to those displaying only low-conductance channels. Factors contributing to the large magnitude of these currents were the long mean open time of high-conductance channels and the presence of multiple channels in these patches. In conclusion, we suggest that the local density of extrasynaptic GABAA receptors may influence their single-channel properties and may be an additional regulating factor for tonic inhibition and, importantly, differential drug modulation.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 20, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off