Differential Desensitization of Ca2+ Mobilization and Vasoconstriction by ETA Receptors in the Gerbil Spiral Modiolar Artery

Differential Desensitization of Ca2+ Mobilization and Vasoconstriction by ETA Receptors in the... Endothelins are known to be among the most potent endogenous vasoconstrictors. Vasoconstriction of the spiral modiolar artery, which supplies the cochlea, may be implicated in hearing loss and tinnitus. The purpose of the present study was to determine whether the spiral modiolar artery responds to endothelin, whether a change in the cytosolic Ca2+ concentration ([Ca2+]i) mediates the response and which endothelin receptors are present. The vascular diameter and [Ca2+]i were measured simultaneously by videomicroscopy and microfluorometry in the isolated spiral modiolar artery from the gerbil. ET-1 induced a transient [Ca2+]i increase and a strong and long-lasting vasoconstriction. The transient [Ca2+]i increase underwent rapid desensitization, was independent of extracellular Ca2+ and inhibited by the IP3-receptor blocker (75 μm) 2-aminoethoxydiphenyl borate (2-APB) and by depletion of Ca2+ stores with 10−6 m thapsigargin. In contrast, the vasoconstriction displayed no comparable desensitization. The initial vasoconstriction was independent of extracellular Ca2+ but maintenance of the constriction depended on the presence of extracellular Ca2+. The half-maximal concentration values (EC 50) for the agonists ET-1, ET-3 and sarafotoxin S6c were 0.8 nm, >10 nm and >100 nm, respectively. Affinity constants for the antagonists BQ-123 and BQ-788 were 24 nm and 77 nm, respectively. These observations demonstrate that ET-1 mediates a vasoconstriction of the gerbil spiral modiolar artery via ETA receptors and an IP3 receptor-mediated release of Ca2+ from thapsigargin-sensitive Ca2+ stores. The marked difference in desensitization between Ca2+ mobilization and vasoconstriction suggests that Ca2+ mobilization is not solely responsible for the vasoconstriction and that other signaling mechanisms must be present. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Differential Desensitization of Ca2+ Mobilization and Vasoconstriction by ETA Receptors in the Gerbil Spiral Modiolar Artery

Loading next page...
Copyright © Inc. by 2001 Springer-Verlag New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial