Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins from rice

Different subcellular localization and trafficking properties of KNOX class 1 homeodomain... Genes of the KN1-like homeobox (KNOX) class 1 encode transcription factors involved in shoot apical meristem development and maintenance. We studied the subcellular localization of Green Fluorescent Protein-tagged rice KNOX proteins (Oskn1-3) after particle bombardment of onion and rice cells and after transformation ofArabidopsis and rice with constitutive and inducible expression constructs. In all test systems, the three rice KNOX proteins showed nuclear and cytoplasmic localization patterns. However, Oskn1 additionally showed in some cells a distribution over punctae moving randomly in the cytosol. Use of an inducible expression system indicated a nuclear presence of Oskn1 in cells of the shoot apical meristem and post-transcriptional down-regulation in early leaf primordia. Arabidopsis and rice test systems were used to study effects of plant hormones and auxin transport inhibition on KNOX protein localization. Application of GA3 or 1-NAA shifted protein localization completely to the cytoplasm and resulted in loss of the punctae formed by Oskn1. Conversely, NPA application induced a complete nuclear localization of the KNOX proteins. To study intercellular movement of the KNOX proteins we set up a novel co-bombardment assay in which trafficking of untagged KNOX proteins was visualized through the co-trafficking of green fluorescent or blue fluorescent marker proteins. In multiple independent experiments Oskn1 trafficked more extensively to neighboring cells than Oskn2 and Oskn3. Differences in the localization and trafficking properties of Oskn1, Oskn2 and Oskn3 correlate with differences in mRNA localization patterns and functional differences between the rice KNOX genes and their putative orthologues from other species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins from rice

Loading next page...
 
/lp/springer_journal/different-subcellular-localization-and-trafficking-properties-of-knox-gxcRNe8eEJ
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-1967-3
Publisher site
See Article on Publisher Site

Abstract

Genes of the KN1-like homeobox (KNOX) class 1 encode transcription factors involved in shoot apical meristem development and maintenance. We studied the subcellular localization of Green Fluorescent Protein-tagged rice KNOX proteins (Oskn1-3) after particle bombardment of onion and rice cells and after transformation ofArabidopsis and rice with constitutive and inducible expression constructs. In all test systems, the three rice KNOX proteins showed nuclear and cytoplasmic localization patterns. However, Oskn1 additionally showed in some cells a distribution over punctae moving randomly in the cytosol. Use of an inducible expression system indicated a nuclear presence of Oskn1 in cells of the shoot apical meristem and post-transcriptional down-regulation in early leaf primordia. Arabidopsis and rice test systems were used to study effects of plant hormones and auxin transport inhibition on KNOX protein localization. Application of GA3 or 1-NAA shifted protein localization completely to the cytoplasm and resulted in loss of the punctae formed by Oskn1. Conversely, NPA application induced a complete nuclear localization of the KNOX proteins. To study intercellular movement of the KNOX proteins we set up a novel co-bombardment assay in which trafficking of untagged KNOX proteins was visualized through the co-trafficking of green fluorescent or blue fluorescent marker proteins. In multiple independent experiments Oskn1 trafficked more extensively to neighboring cells than Oskn2 and Oskn3. Differences in the localization and trafficking properties of Oskn1, Oskn2 and Oskn3 correlate with differences in mRNA localization patterns and functional differences between the rice KNOX genes and their putative orthologues from other species.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off