Different Response Patterns of Soil Respiration to a Nitrogen Addition Gradient in Four Types of Land-Use on an Alluvial Island in China

Different Response Patterns of Soil Respiration to a Nitrogen Addition Gradient in Four Types of... It has been well documented that nitrogen (N) additions significantly affect soil respiration (R s) and its components [that is, autotrophic (R a) and heterotrophic respiration (R h)] in terrestrial ecosystems. These N-induced effects largely result from changes in plant growth, soil properties (for example, pH), and/ or microbial community. However, how R s and its components respond to N addition gradients from low to high fertilizer application rates and what the differences are in diverse land-use types remain unclear. In our study, a field experiment was conducted to examine response patterns of R s to a N addition gradient at four levels (0, 15, 30, and 45 g N m−2 y−1) in four types of land-use (paddy rice–wheat and maize–wheat croplands, an abandoned field grassland, and a Metasequoia plantation) from December 2012 to September 2014 in eastern China. Our results showed that N addition significantly stimulated R s in all four land-use types and R h in croplands (paddy rice–wheat and maize–wheat). R s increased linearly with N addition rates in croplands and the plantation, whereas in grassland, it exhibited a parabolic response to N addition rates with the highest values at the moderate N level in spite of the homogeneous matrix for all four land-use types. This suggested higher response thresholds of R s to the N addition gradient in croplands and the plantation. During the wheat-growing season in the two croplands, R h also displayed linear increases with rising N addition rates. Interestingly, N addition significantly decreased the apparent temperature sensitivity of R s and increased basal R s. The different response patterns of R s to the N addition gradient in diverse land-use types with a similar soil matrix indicate that vegetation type is very important in regulating terrestrial C cycle feedback to climate change under N deposition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecosystems Springer Journals

Different Response Patterns of Soil Respiration to a Nitrogen Addition Gradient in Four Types of Land-Use on an Alluvial Island in China

Loading next page...
 
/lp/springer_journal/different-response-patterns-of-soil-respiration-to-a-nitrogen-addition-4MrxzSDDAe
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Ecology; Plant Sciences; Zoology; Environmental Management; Geoecology/Natural Processes; Hydrology/Water Resources
ISSN
1432-9840
eISSN
1435-0629
D.O.I.
10.1007/s10021-016-0079-7
Publisher site
See Article on Publisher Site

Abstract

It has been well documented that nitrogen (N) additions significantly affect soil respiration (R s) and its components [that is, autotrophic (R a) and heterotrophic respiration (R h)] in terrestrial ecosystems. These N-induced effects largely result from changes in plant growth, soil properties (for example, pH), and/ or microbial community. However, how R s and its components respond to N addition gradients from low to high fertilizer application rates and what the differences are in diverse land-use types remain unclear. In our study, a field experiment was conducted to examine response patterns of R s to a N addition gradient at four levels (0, 15, 30, and 45 g N m−2 y−1) in four types of land-use (paddy rice–wheat and maize–wheat croplands, an abandoned field grassland, and a Metasequoia plantation) from December 2012 to September 2014 in eastern China. Our results showed that N addition significantly stimulated R s in all four land-use types and R h in croplands (paddy rice–wheat and maize–wheat). R s increased linearly with N addition rates in croplands and the plantation, whereas in grassland, it exhibited a parabolic response to N addition rates with the highest values at the moderate N level in spite of the homogeneous matrix for all four land-use types. This suggested higher response thresholds of R s to the N addition gradient in croplands and the plantation. During the wheat-growing season in the two croplands, R h also displayed linear increases with rising N addition rates. Interestingly, N addition significantly decreased the apparent temperature sensitivity of R s and increased basal R s. The different response patterns of R s to the N addition gradient in diverse land-use types with a similar soil matrix indicate that vegetation type is very important in regulating terrestrial C cycle feedback to climate change under N deposition.

Journal

EcosystemsSpringer Journals

Published: Dec 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off