Differences in protein expression and ultrastructure between two wheat near-isogenic lines affected by powdery mildew

Differences in protein expression and ultrastructure between two wheat near-isogenic lines... Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt). Pm21 is an effective broad-spectrum powdery mildew resistance gene, which shows a considerable promise in wheat breeding. We report here a proteomic approach to investigate the resistance response proteins after fungal infection and emphasize the resistance changes induced by Pm21. Two wheat (Triticum aestivum L.) near-isogenic lines (NILs), recurrent parent ‘Bainong,’ which is susceptible to powdery mildew, and its near-isogenic line ‘W2132’ carrying resistance gene Pm21) were used to investigate some changes in their proteomes after being infected. Proteins were extracted from the leaves sampled in 48 h after inoculation, separated by two-dimensional electrophoresis, and stained with Coomassie brilliant blue. Among these proteins, a total of 56 spots differentially expressed after Bgt infection were detected. Sixteen proteins, identified by MALDI-TOF-MS, exhibited more than a 1.5-fold increase upon fungal infection. Unfortunately, three spots were not identified successfully. The predicted functions of identified proteins were related to energy metabolism and defensive responses; they were involved in many physiological resistance responses, including enhancing energy metabolism, proteins synthesis and stabilization, antioxidant reactions, cell-wall reinforcement, and lignification. Interestingly that the expression of two proteins related to the cell-wall reinforcement was enhanced in the resistant line and one protein related to photosynthesis was lost in a susceptible line. By transmission electronic microscopy, the corresponding physiological characteristics were also observed. These results provide us with the information to further reveal the resistance mechanism of Pm21 action and comprehensively investigate the physiological response to powdery mildew at the protein level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Differences in protein expression and ultrastructure between two wheat near-isogenic lines affected by powdery mildew

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2011 by Pleiades Publishing, Ltd.
Life Sciences; Plant Physiology; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial