Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non embryogenic lines of Pinus radiata D. don

Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between... Pinus radiata is the most important conifer species for commercial forestry in countries such as Australia, New Zeeland and Chile. Nowadays, SE (somatic embryogenesis) is considered the most promising in vitro method for large scale vegetative propagation of woody plants. The understanding of the molecular basis of SE is in its very beginning and a number of embryogenesis-related genes have been identified in conifers. Among the molecular mechanisms involved in regulation of SE, DNA methylation, which is an epigenetic modification associated with transcriptional silencing, has shown to be a pivotal factor controlling gene expression. In this work, we studied the morphological and molecular differences between cell lines previously characterized in terms of their embryogenic potential as embryogenic (E) and non embryogenic (NE), obtained from immature zygotic embryos of P. radiata. In contrast to E lines, NE lines were composed of multicellular aggregates lacking polarity, and they were characterized by the presence of significantly lower transcript levels of embryogenesis-related genes and higher global DNA methylation. Furthermore, the detection of vibrational markers of DNA conformation indicated that DNA samples obtained from E lines presented the common B-DNA conformation, while NE samples presented Z-conformation. Taken together, our results highlight the role of epigenetic mechanisms such as DNA methylation in regulating the expression of embryogenesis- related genes, having impact on the embryo patterning and cell differentiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell, Tissue and Organ Culture Springer Journals

Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non embryogenic lines of Pinus radiata D. don

Loading next page...
 
/lp/springer_journal/differences-in-dna-methylation-dna-structure-and-embryogenesis-related-FSJB7UaIXS
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Plant Physiology; Plant Genetics and Genomics; Plant Pathology
ISSN
0167-6857
eISSN
1573-5044
D.O.I.
10.1007/s11240-017-1242-3
Publisher site
See Article on Publisher Site

Abstract

Pinus radiata is the most important conifer species for commercial forestry in countries such as Australia, New Zeeland and Chile. Nowadays, SE (somatic embryogenesis) is considered the most promising in vitro method for large scale vegetative propagation of woody plants. The understanding of the molecular basis of SE is in its very beginning and a number of embryogenesis-related genes have been identified in conifers. Among the molecular mechanisms involved in regulation of SE, DNA methylation, which is an epigenetic modification associated with transcriptional silencing, has shown to be a pivotal factor controlling gene expression. In this work, we studied the morphological and molecular differences between cell lines previously characterized in terms of their embryogenic potential as embryogenic (E) and non embryogenic (NE), obtained from immature zygotic embryos of P. radiata. In contrast to E lines, NE lines were composed of multicellular aggregates lacking polarity, and they were characterized by the presence of significantly lower transcript levels of embryogenesis-related genes and higher global DNA methylation. Furthermore, the detection of vibrational markers of DNA conformation indicated that DNA samples obtained from E lines presented the common B-DNA conformation, while NE samples presented Z-conformation. Taken together, our results highlight the role of epigenetic mechanisms such as DNA methylation in regulating the expression of embryogenesis- related genes, having impact on the embryo patterning and cell differentiation.

Journal

Plant Cell, Tissue and Organ CultureSpringer Journals

Published: Jun 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off