Dielectric properties and thermal conductivity of graphene nanoplatelet filled poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend

Dielectric properties and thermal conductivity of graphene nanoplatelet filled poly(vinylidene... Poly(methyl methacrylate) (PMMA) and graphene nanoplatelet (GNP) was introduced into poly(vinylidene fluoride) (PVDF) via a solution blending process, and a series of PVDF/PMMA/GNP composites were obtained. Scanning electron microscope (SEM) micrographs of the composite with 4 wt% GNP loading showed that GNP randomly dispersed and partly arranged parallel to each other in the matrix. Fourier transform infrared (FT-IR) spectroscopy results and X-ray diffraction (XRD) analysis revealed the increasing percentage of β- and γ-phase PVDF crystals in the composites with increasing the GNP contents. The frequency dependent electrical conductivity and dielectric properties of composites have been performed in the range of 102 − 107 Hz which obeyed the percolation theory. Dielectric constant and dielectric loss of composites increased with increasing GNP contents in the all frequency region. A dielectric constant of ~148 and dielectric loss of ~0.3 was observed at 102 Hz with 4 wt% of GNP loading, which is near the percolation threshold. Meanwhile, the thermal conductivity reached up to 0.84 W/m K for PVDF/PMMA/GNP composites with 4 wt% of GNP loading. An approch was provided to develop a variety of highly thermally conductive dielectric materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Dielectric properties and thermal conductivity of graphene nanoplatelet filled poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend

Loading next page...
 
/lp/springer_journal/dielectric-properties-and-thermal-conductivity-of-graphene-jOe0lctEsx
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7132-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial