Dexamethasone treatment decreases replication of viral hemorrhagic septicemia virus in Epithelioma papulosum cyprini cells

Dexamethasone treatment decreases replication of viral hemorrhagic septicemia virus in... The expression of Mx1 in EPC cells after treatment with poly(I:C) or infection with viral hemorrhagic septicemia virus (VHSV) was significantly suppressed by treatment with dexamethasone. However, the titer of VHSV did not increase but instead decreased after dexamethasone treatment. This suggests that dexamethasone not only downregulates type I IFN but also affects certain factors that are necessary for VHSV replication. An important effect of HSP90 on replication of RNA viruses and downregulation of HSP90 by glucocorticoids have been reported. In this study, dexamethasone downregulated HSP90α expression in EPC cells that were stimulated with poly(I:C) or infected with VHSV. Furthermore, cells treated with an HSP90 inhibitor, geldanamycin, showed significantly decreased titers of VHSV, suggesting that HSP90 may be an important host component involved in VHSV replication, and HSP90 inhibition might be one of the causes for the observed reduction in viral titer caused by dexamethasone treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Dexamethasone treatment decreases replication of viral hemorrhagic septicemia virus in Epithelioma papulosum cyprini cells

Loading next page...
 
/lp/springer_journal/dexamethasone-treatment-decreases-replication-of-viral-hemorrhagic-J1nVU2y1Lr
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-017-3248-x
Publisher site
See Article on Publisher Site

Abstract

The expression of Mx1 in EPC cells after treatment with poly(I:C) or infection with viral hemorrhagic septicemia virus (VHSV) was significantly suppressed by treatment with dexamethasone. However, the titer of VHSV did not increase but instead decreased after dexamethasone treatment. This suggests that dexamethasone not only downregulates type I IFN but also affects certain factors that are necessary for VHSV replication. An important effect of HSP90 on replication of RNA viruses and downregulation of HSP90 by glucocorticoids have been reported. In this study, dexamethasone downregulated HSP90α expression in EPC cells that were stimulated with poly(I:C) or infected with VHSV. Furthermore, cells treated with an HSP90 inhibitor, geldanamycin, showed significantly decreased titers of VHSV, suggesting that HSP90 may be an important host component involved in VHSV replication, and HSP90 inhibition might be one of the causes for the observed reduction in viral titer caused by dexamethasone treatment.

Journal

Archives of VirologySpringer Journals

Published: Feb 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off