Developmental, stress and ABA modulation of mRNA levels for bZip transcription factors and Vp1 in barley embryos and embryo-derived suspension cultures

Developmental, stress and ABA modulation of mRNA levels for bZip transcription factors and Vp1 in... The transcription factors VP1 (Viviparous-1), EmBP-1 (Em-binding protein 1) and OSBZ8, originally cloned and analysed in various monocot species, have been implicated in the regulation of the Lea (late embryogenesis-abundant) group 1 genes. We have investigated the modulation of the levels of these mRNAs in barley during embryogenesis, and in developing embryos subjected to various kinds of osmotic stress. The accumulation of mRNA for VP1 and EmBP-1 transcription factors, using cDNAs cloned from barley, starts at 10 and 15 days after anthesis, respectively, whereas Lea B19 mRNA levels are very low or undetectable until 25 days after anthesis during normal development. The EmBP-1 mRNA is predominantly induced in mannitol-stressed immature embryos. Vp1 mRNA was not significantly modulated by ABA, salt or mannitol. Inhibition of ABA biosynthesis by norflurazon showed that the induction of both Vp1 and EmBP-1 mRNAs was ABA-independent. In embryo-derived suspension-cultured cells, neither of the two transcripts would be induced by ABA or osmotic stress, although both OSBZ8 and one member of the Lea B19 family was up-regulated by ABA. Electrophoretic mobility shift assays using a Lea B19.1 probe with an ABRE (abscisic acid-responsive element) similar to that which binds EmBP-1 and OSBZ8 in the wheat and rice Em promoters show that the binding activity is increased by ABA and osmotic stress. Taken together, these data show that both VP1 and EmBP-1 are involved in embryo-specific signal transduction pathways, that they are differentially regulated at the mRNA level, and that EmBP-1 can be induced by osmotic stress independently of any increase in endogenous ABA. The difference in mRNA regulation patterns of OSBZ8 and EmBP-1 may suggest that they are involved in different signal transduction pathways in connection with osmotic stress/ABA regulation of Lea genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Developmental, stress and ABA modulation of mRNA levels for bZip transcription factors and Vp1 in barley embryos and embryo-derived suspension cultures

Loading next page...
 
/lp/springer_journal/developmental-stress-and-aba-modulation-of-mrna-levels-for-bzip-k8uNd57DTn
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005815017718
Publisher site
See Article on Publisher Site

Abstract

The transcription factors VP1 (Viviparous-1), EmBP-1 (Em-binding protein 1) and OSBZ8, originally cloned and analysed in various monocot species, have been implicated in the regulation of the Lea (late embryogenesis-abundant) group 1 genes. We have investigated the modulation of the levels of these mRNAs in barley during embryogenesis, and in developing embryos subjected to various kinds of osmotic stress. The accumulation of mRNA for VP1 and EmBP-1 transcription factors, using cDNAs cloned from barley, starts at 10 and 15 days after anthesis, respectively, whereas Lea B19 mRNA levels are very low or undetectable until 25 days after anthesis during normal development. The EmBP-1 mRNA is predominantly induced in mannitol-stressed immature embryos. Vp1 mRNA was not significantly modulated by ABA, salt or mannitol. Inhibition of ABA biosynthesis by norflurazon showed that the induction of both Vp1 and EmBP-1 mRNAs was ABA-independent. In embryo-derived suspension-cultured cells, neither of the two transcripts would be induced by ABA or osmotic stress, although both OSBZ8 and one member of the Lea B19 family was up-regulated by ABA. Electrophoretic mobility shift assays using a Lea B19.1 probe with an ABRE (abscisic acid-responsive element) similar to that which binds EmBP-1 and OSBZ8 in the wheat and rice Em promoters show that the binding activity is increased by ABA and osmotic stress. Taken together, these data show that both VP1 and EmBP-1 are involved in embryo-specific signal transduction pathways, that they are differentially regulated at the mRNA level, and that EmBP-1 can be induced by osmotic stress independently of any increase in endogenous ABA. The difference in mRNA regulation patterns of OSBZ8 and EmBP-1 may suggest that they are involved in different signal transduction pathways in connection with osmotic stress/ABA regulation of Lea genes.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off