Developmental stability of a leaf of Pisum sativum L. under the influence of formaldehyde in a wide range of doses

Developmental stability of a leaf of Pisum sativum L. under the influence of formaldehyde in a... The influence of formaldehyde in a wide range of doses on the stability of development of the third leaf of pea (Pisum sativum L.) was studied. The developmental stability of the leaf was assessed by the change in the value of the directional asymmetry of the right and left leaflets caused by the fluctuating asymmetry of these morphological structures. When subjected to a toxic agent, the studied parameter exhibited a paradoxical effect. In minimum studied concentrations, formaldehyde disturbed stability of leaf development, which was manifested in an increase in the asymmetry of the right and left leaflets. At medium concentrations of the toxicant, the asymmetry was less than the control level, which indicated an increase in the developmental stability of the pea leaf. Maximum studied concentrations of formaldehyde, close to sublethal, again reduced the stability of development of the pea leaf and led to an increase in the asymmetry of its leaflets compared with the controls. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Developmental stability of a leaf of Pisum sativum L. under the influence of formaldehyde in a wide range of doses

Loading next page...
 
/lp/springer_journal/developmental-stability-of-a-leaf-of-pisum-sativum-l-under-the-XD9P8t0jxV
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Animal Anatomy / Morphology / Histology; Developmental Biology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360412050025
Publisher site
See Article on Publisher Site

Abstract

The influence of formaldehyde in a wide range of doses on the stability of development of the third leaf of pea (Pisum sativum L.) was studied. The developmental stability of the leaf was assessed by the change in the value of the directional asymmetry of the right and left leaflets caused by the fluctuating asymmetry of these morphological structures. When subjected to a toxic agent, the studied parameter exhibited a paradoxical effect. In minimum studied concentrations, formaldehyde disturbed stability of leaf development, which was manifested in an increase in the asymmetry of the right and left leaflets. At medium concentrations of the toxicant, the asymmetry was less than the control level, which indicated an increase in the developmental stability of the pea leaf. Maximum studied concentrations of formaldehyde, close to sublethal, again reduced the stability of development of the pea leaf and led to an increase in the asymmetry of its leaflets compared with the controls.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Sep 16, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off