Developmental regulation and downstream effects of the knox class homeobox genes Oskn2 and Oskn3 from rice

Developmental regulation and downstream effects of the knox class homeobox genes Oskn2 and Oskn3... Plant homeobox genes of the class 1 knox (knotted1-like) type are involved in the regulation of shoot apical meristem formation and function. Their expression generally occurs either throughout the meristem or specifically at the lateral organ boundaries. Down-regulation in the organ primordia is tightly controlled and misexpression in leaves leads to a perturbed development. Here, the transcriptional control of two rice knox genes, Oskn2 and Oskn3, was addressed, showing that the promoter sequences of both genes mediate the initial down-regulation during lateral organ formation, but are insufficient to keep expression in lateral organs stably off. Therefore, maintenance of the repressed state requires control elements outside the promoter regions. Ectopic expression of Oskn2 or Oskn3 induced similar defects in panicle branching, internode elongation and leaf patterning. However, small differences suggested that their target gene specificities are not completely overlapping. This was supported by the observation that Oskn3 protein but not Oskn2 could interact with two reported recognition sequences of a KNOX protein from barley. Finally, protein-protein interactions may contribute to the functioning of KNOX proteins, as the ability of Oskn3 and Oskn2 to form heterodimers could be demonstrated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Developmental regulation and downstream effects of the knox class homeobox genes Oskn2 and Oskn3 from rice

Loading next page...
 
/lp/springer_journal/developmental-regulation-and-downstream-effects-of-the-knox-class-wRzqydyooU
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1014047917226
Publisher site
See Article on Publisher Site

Abstract

Plant homeobox genes of the class 1 knox (knotted1-like) type are involved in the regulation of shoot apical meristem formation and function. Their expression generally occurs either throughout the meristem or specifically at the lateral organ boundaries. Down-regulation in the organ primordia is tightly controlled and misexpression in leaves leads to a perturbed development. Here, the transcriptional control of two rice knox genes, Oskn2 and Oskn3, was addressed, showing that the promoter sequences of both genes mediate the initial down-regulation during lateral organ formation, but are insufficient to keep expression in lateral organs stably off. Therefore, maintenance of the repressed state requires control elements outside the promoter regions. Ectopic expression of Oskn2 or Oskn3 induced similar defects in panicle branching, internode elongation and leaf patterning. However, small differences suggested that their target gene specificities are not completely overlapping. This was supported by the observation that Oskn3 protein but not Oskn2 could interact with two reported recognition sequences of a KNOX protein from barley. Finally, protein-protein interactions may contribute to the functioning of KNOX proteins, as the ability of Oskn3 and Oskn2 to form heterodimers could be demonstrated.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off