Developmental methylation program and concerted expression of Stx11 in mouse tissues

Developmental methylation program and concerted expression of Stx11 in mouse tissues The human 6q24 region is involved in growth and development, transient neonatal diabetes (TND), cancer, and metabolic dysfunction. To further characterize this region, the developmental status of DNA methylation and expression of Zac1 and Stx11 genes located within the mouse 10A1 region ortholog of human 6q24 were determined. In mice, imprinted Zac1 and Stx11 were highly expressed at the end of fetal development but downregulated at 4 and 11 weeks in brain, pancreas, and heart. Postnatal Zac1 downregulation was independent from promoter methylation of the expressed allele, suggesting the mediation of age-dependent chromatin remodeling. Stx11 nonpromoter CpG island was methylated de novo from E18 to 1 year with tissue-specific kinetics. The high conservation in vertebrates of Stx11 CpG2 is suggestive of an important regulatory function in age-related regional epigenetic state and/or chromatin configuration. Stx11 alleles were unequally expressed in F1 mice tissues, reflecting the influence of cis-regulatory factors on its expression. These data suggest the presence of a methylation domain and a coordinated gene expression pattern in multiple tissues. Methylation variation and allelic regulation of expression may underlie genetic diversity and contribute to disease susceptibility at the 6q24 locus in humans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Developmental methylation program and concerted expression of Stx11 in mouse tissues

Loading next page...
 
/lp/springer_journal/developmental-methylation-program-and-concerted-expression-of-stx11-in-JYyn0fUBbw
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-008-9162-5
Publisher site
See Article on Publisher Site

Abstract

The human 6q24 region is involved in growth and development, transient neonatal diabetes (TND), cancer, and metabolic dysfunction. To further characterize this region, the developmental status of DNA methylation and expression of Zac1 and Stx11 genes located within the mouse 10A1 region ortholog of human 6q24 were determined. In mice, imprinted Zac1 and Stx11 were highly expressed at the end of fetal development but downregulated at 4 and 11 weeks in brain, pancreas, and heart. Postnatal Zac1 downregulation was independent from promoter methylation of the expressed allele, suggesting the mediation of age-dependent chromatin remodeling. Stx11 nonpromoter CpG island was methylated de novo from E18 to 1 year with tissue-specific kinetics. The high conservation in vertebrates of Stx11 CpG2 is suggestive of an important regulatory function in age-related regional epigenetic state and/or chromatin configuration. Stx11 alleles were unequally expressed in F1 mice tissues, reflecting the influence of cis-regulatory factors on its expression. These data suggest the presence of a methylation domain and a coordinated gene expression pattern in multiple tissues. Methylation variation and allelic regulation of expression may underlie genetic diversity and contribute to disease susceptibility at the 6q24 locus in humans.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 24, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off