Development of serotonergic neurons of dorsal raphe nuclei in mice with knockout of monoamine oxidase a and 5-HT1A and 5-HT1B autoreceptor

Development of serotonergic neurons of dorsal raphe nuclei in mice with knockout of monoamine... The morphological changes in the development of serotonergic neurons of the dorsal raphe nuclei in the medulla oblongata was studied by immunocytochemistry in mice with knockout of 1A and 1B serotonin autoreceptors as well as monoamine oxidase A. Serotonin autoreceptors regulate electric activity of serotonergic neurons as well as the synthesis and release of the neurotransmitter, while monoamine oxidase A catalyzes its degradation. These genetic modifications proved to have no effect on the number of serotonergic neurons in the medulla oblongata but induced morphofunctional changes. Decreased cell size and increased intracellular serotonin level were observed in the case of monoamine oxidase A deficiency, while excessive cell size and decreased intracellular serotonin level were observed in the case of autoreceptor deficiency. The data obtained confirm the hypothesis of autoregulation of serotonergic neurons in development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Development of serotonergic neurons of dorsal raphe nuclei in mice with knockout of monoamine oxidase a and 5-HT1A and 5-HT1B autoreceptor

Loading next page...
 
/lp/springer_journal/development-of-serotonergic-neurons-of-dorsal-raphe-nuclei-in-mice-N0JUSLQB86
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Animal Anatomy / Morphology / Histology; Developmental Biology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360409040043
Publisher site
See Article on Publisher Site

Abstract

The morphological changes in the development of serotonergic neurons of the dorsal raphe nuclei in the medulla oblongata was studied by immunocytochemistry in mice with knockout of 1A and 1B serotonin autoreceptors as well as monoamine oxidase A. Serotonin autoreceptors regulate electric activity of serotonergic neurons as well as the synthesis and release of the neurotransmitter, while monoamine oxidase A catalyzes its degradation. These genetic modifications proved to have no effect on the number of serotonergic neurons in the medulla oblongata but induced morphofunctional changes. Decreased cell size and increased intracellular serotonin level were observed in the case of monoamine oxidase A deficiency, while excessive cell size and decreased intracellular serotonin level were observed in the case of autoreceptor deficiency. The data obtained confirm the hypothesis of autoregulation of serotonergic neurons in development.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Aug 13, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off