Development of serotonergic neurons of dorsal raphe nuclei in mice with knockout of monoamine oxidase a and 5-HT1A and 5-HT1B autoreceptor

Development of serotonergic neurons of dorsal raphe nuclei in mice with knockout of monoamine... The morphological changes in the development of serotonergic neurons of the dorsal raphe nuclei in the medulla oblongata was studied by immunocytochemistry in mice with knockout of 1A and 1B serotonin autoreceptors as well as monoamine oxidase A. Serotonin autoreceptors regulate electric activity of serotonergic neurons as well as the synthesis and release of the neurotransmitter, while monoamine oxidase A catalyzes its degradation. These genetic modifications proved to have no effect on the number of serotonergic neurons in the medulla oblongata but induced morphofunctional changes. Decreased cell size and increased intracellular serotonin level were observed in the case of monoamine oxidase A deficiency, while excessive cell size and decreased intracellular serotonin level were observed in the case of autoreceptor deficiency. The data obtained confirm the hypothesis of autoregulation of serotonergic neurons in development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Development of serotonergic neurons of dorsal raphe nuclei in mice with knockout of monoamine oxidase a and 5-HT1A and 5-HT1B autoreceptor

Loading next page...
 
/lp/springer_journal/development-of-serotonergic-neurons-of-dorsal-raphe-nuclei-in-mice-N0JUSLQB86
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Animal Anatomy / Morphology / Histology; Developmental Biology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360409040043
Publisher site
See Article on Publisher Site

Abstract

The morphological changes in the development of serotonergic neurons of the dorsal raphe nuclei in the medulla oblongata was studied by immunocytochemistry in mice with knockout of 1A and 1B serotonin autoreceptors as well as monoamine oxidase A. Serotonin autoreceptors regulate electric activity of serotonergic neurons as well as the synthesis and release of the neurotransmitter, while monoamine oxidase A catalyzes its degradation. These genetic modifications proved to have no effect on the number of serotonergic neurons in the medulla oblongata but induced morphofunctional changes. Decreased cell size and increased intracellular serotonin level were observed in the case of monoamine oxidase A deficiency, while excessive cell size and decreased intracellular serotonin level were observed in the case of autoreceptor deficiency. The data obtained confirm the hypothesis of autoregulation of serotonergic neurons in development.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Aug 13, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off