Development of Pollen Grain Walls and Accumulation of Sporopollenin

Development of Pollen Grain Walls and Accumulation of Sporopollenin By means of electron microscopy, we studied the development of pollen grain walls in Calendula officinalis L., Dimorphotheca aurantiaca DC., and Cichorium intybus L. (Asteraceae). As a reference, we studied the plants from the families Schisandraceae (Schisandra chinensis (Turcz.) Baill.), Lauraceae (Persea americana Mill.), Boraginaceae (Borago officinalis L.), and Cycadaceae (Encephalartos altensteinii Lehm.). In Asteraceae, we revealed two successively initiated layers of glycocalyx that form outer and inner layers of the ectexine. The formation of endexine is contributed by plasma membrane and small vesicles. Glycocalyx in the plants from the families Schisandraceae, Lauraceae, Boraginaceae, and Cycadaceae was found to consist of radially arranged helical cylindrical units, which are receptors of sporopollenin deposition. It is assumed that the receptor-independent accumulation of sporopollenin is also possible. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Development of Pollen Grain Walls and Accumulation of Sporopollenin

Loading next page...
 
/lp/springer_journal/development-of-pollen-grain-walls-and-accumulation-of-sporopollenin-FV4F8F02T0
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1023818103172
Publisher site
See Article on Publisher Site

Abstract

By means of electron microscopy, we studied the development of pollen grain walls in Calendula officinalis L., Dimorphotheca aurantiaca DC., and Cichorium intybus L. (Asteraceae). As a reference, we studied the plants from the families Schisandraceae (Schisandra chinensis (Turcz.) Baill.), Lauraceae (Persea americana Mill.), Boraginaceae (Borago officinalis L.), and Cycadaceae (Encephalartos altensteinii Lehm.). In Asteraceae, we revealed two successively initiated layers of glycocalyx that form outer and inner layers of the ectexine. The formation of endexine is contributed by plasma membrane and small vesicles. Glycocalyx in the plants from the families Schisandraceae, Lauraceae, Boraginaceae, and Cycadaceae was found to consist of radially arranged helical cylindrical units, which are receptors of sporopollenin deposition. It is assumed that the receptor-independent accumulation of sporopollenin is also possible.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off