Development of High Temperature Nanoindentation Methodology and its Application in the Nanoindentation of Polycrystalline Tungsten in Vacuum to 950°C

Development of High Temperature Nanoindentation Methodology and its Application in the... The capability for high temperature nanoindentation measurements to 950 °C in high vacuum has been demonstrated on polycrystalline tungsten, a material of great importance for nuclear fusion and spallation applications and as a potential high temperature nanomechanics reference sample. It was possible to produce measurements with minimal thermal drift (typically ~0.05 nm/s at 750–950 °C) and no visible oxidative damage. The temperature dependence of the hardness, elastic modulus, plasticity index, creep, creep strain, and creep recovery were investigated over the temperature range, testing at 25, 750, 800, 850, 900 and 950 °C. The nanoindentation hardness measurements were found to be consistent with previous determinations by hot microhardness. Above 800 °C the hardness changes relatively little but more pronounced time-dependent deformation and plasticity were observed from 850 °C. Plasticity index, indentation creep and creep recovery all increase with temperature. The importance of increased time-dependent deformation and pile-up on the accuracy of the elastic modulus measurements are discussed. Elastic modulus measurements determined from elastic analysis of the unloading curves at 750–800 °C are close to literature bulk values (to within ~11 %). The high temperature modulus measurements deviate more from bulk values determined taking account of the high temperature properties of the indenter material at the point (850 °C) at which more significant time-dependent deformation is observed. This is thought to be due to the dual influence of increased time-dependency and pile-up that are not being accounted for in the elastic unloading analysis. Accounting for this time-dependency by applying a viscoelastic compliance correction developed by G. Feng and A.H.W. Ngan (J. Mater. Res. (2002) 17:660–668) greatly reduces the values of the elastic modulus, so they are agree to within 6 % of literature values at 950 °C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Mechanics Springer Journals

Development of High Temperature Nanoindentation Methodology and its Application in the Nanoindentation of Polycrystalline Tungsten in Vacuum to 950°C

Loading next page...
 
/lp/springer_journal/development-of-high-temperature-nanoindentation-methodology-and-its-RmyXj8S4DJ
Publisher
Springer US
Copyright
Copyright © 2016 by Society for Experimental Mechanics
Subject
Engineering; Continuum Mechanics and Mechanics of Materials; Characterization and Evaluation of Materials; Optics, Lasers, Photonics, Optical Devices; Structural Mechanics; Vibration, Dynamical Systems, Control; Classical Mechanics
ISSN
0014-4851
eISSN
1741-2765
D.O.I.
10.1007/s11340-016-0209-3
Publisher site
See Article on Publisher Site

Abstract

The capability for high temperature nanoindentation measurements to 950 °C in high vacuum has been demonstrated on polycrystalline tungsten, a material of great importance for nuclear fusion and spallation applications and as a potential high temperature nanomechanics reference sample. It was possible to produce measurements with minimal thermal drift (typically ~0.05 nm/s at 750–950 °C) and no visible oxidative damage. The temperature dependence of the hardness, elastic modulus, plasticity index, creep, creep strain, and creep recovery were investigated over the temperature range, testing at 25, 750, 800, 850, 900 and 950 °C. The nanoindentation hardness measurements were found to be consistent with previous determinations by hot microhardness. Above 800 °C the hardness changes relatively little but more pronounced time-dependent deformation and plasticity were observed from 850 °C. Plasticity index, indentation creep and creep recovery all increase with temperature. The importance of increased time-dependent deformation and pile-up on the accuracy of the elastic modulus measurements are discussed. Elastic modulus measurements determined from elastic analysis of the unloading curves at 750–800 °C are close to literature bulk values (to within ~11 %). The high temperature modulus measurements deviate more from bulk values determined taking account of the high temperature properties of the indenter material at the point (850 °C) at which more significant time-dependent deformation is observed. This is thought to be due to the dual influence of increased time-dependency and pile-up that are not being accounted for in the elastic unloading analysis. Accounting for this time-dependency by applying a viscoelastic compliance correction developed by G. Feng and A.H.W. Ngan (J. Mater. Res. (2002) 17:660–668) greatly reduces the values of the elastic modulus, so they are agree to within 6 % of literature values at 950 °C.

Journal

Experimental MechanicsSpringer Journals

Published: Aug 25, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off