Development of fiberscope PIV system by controlling diode laser illumination

Development of fiberscope PIV system by controlling diode laser illumination Because of the inherent small size of optical fiberscopes, they provide access and relative handling ease in given closed vessels, which are hardly equipped with extra windows for conventional flow visualization. The use of an optical fiberscope in conjunction with a conventional particle image velocimetry/particle tracking velocimetry (PIV/PTV) system without optimization can lead to degraded transmission of images. The present study proposes a processing technique to filter background noise contained within the coarse bundle image by subtracting the original image of the bundle as reference image. Additionally, efforts were made to increase the reliability of vector processing using particle streak images via judicious pulse interval and duration adjustments. As an applications test we measured classic jet flow using the developed system and using established conventional measurement techniques. Our tests confirmed that our fiberscope PTV system provides vector fields with sufficient accuracy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Development of fiberscope PIV system by controlling diode laser illumination

Loading next page...
 
/lp/springer_journal/development-of-fiberscope-piv-system-by-controlling-diode-laser-LjpKIQJ2vO
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0517-5
Publisher site
See Article on Publisher Site

Abstract

Because of the inherent small size of optical fiberscopes, they provide access and relative handling ease in given closed vessels, which are hardly equipped with extra windows for conventional flow visualization. The use of an optical fiberscope in conjunction with a conventional particle image velocimetry/particle tracking velocimetry (PIV/PTV) system without optimization can lead to degraded transmission of images. The present study proposes a processing technique to filter background noise contained within the coarse bundle image by subtracting the original image of the bundle as reference image. Additionally, efforts were made to increase the reliability of vector processing using particle streak images via judicious pulse interval and duration adjustments. As an applications test we measured classic jet flow using the developed system and using established conventional measurement techniques. Our tests confirmed that our fiberscope PTV system provides vector fields with sufficient accuracy.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 17, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off