Development of Energy-Saving Devices for a 20,000DWT River–Sea Bulk Carrier

Development of Energy-Saving Devices for a 20,000DWT River–Sea Bulk Carrier A reduction of fuel consumption and an increase in efficiency are currently required for river–sea bulk carriers. Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels. Based on the hydrodynamic characteristics of the 20,000DWT river–sea bulk carrier, in this study, we proposed, designed, and tested a series of pre-swirl energy-saving devices (ESDs). The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power. The results confirm the success of our ESD for the 20,000DWT river–sea bulk carrier. We validated the role of Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) in the twin-skeg river–sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Marine Science and Application Springer Journals

Development of Energy-Saving Devices for a 20,000DWT River–Sea Bulk Carrier

Loading next page...
 
/lp/springer_journal/development-of-energy-saving-devices-for-a-20-000dwt-river-sea-bulk-JnLBbiQLjA
Publisher
Harbin Engineering University
Copyright
Copyright © 2018 by Harbin Engineering University and Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Offshore Engineering; Machinery and Machine Elements; Power Electronics, Electrical Machines and Networks; Geotechnical Engineering & Applied Earth Sciences
ISSN
1671-9433
eISSN
1993-5048
D.O.I.
10.1007/s11804-018-0015-7
Publisher site
See Article on Publisher Site

Abstract

A reduction of fuel consumption and an increase in efficiency are currently required for river–sea bulk carriers. Pre-swirl and ducted stators are widely used devices in the industry and efficiency gains can be obtained for single-screw and twin-screw vessels. Based on the hydrodynamic characteristics of the 20,000DWT river–sea bulk carrier, in this study, we proposed, designed, and tested a series of pre-swirl energy-saving devices (ESDs). The experimental results demonstrate that the proposed ESDs improved the propulsive efficiency and reduced the delivered power. The results confirm the success of our ESD for the 20,000DWT river–sea bulk carrier. We validated the role of Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) in the twin-skeg river–sea vessel ESD design and found the circumferential arrangement and number of stators to be important factors in the design process.

Journal

Journal of Marine Science and ApplicationSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off